Numerical Simulation of Generalized Oldroyd-B and Generalized Newtonian Fluid Flows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F13%3A00211484" target="_blank" >RIV/68407700:21220/13:00211484 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs00607-012-0281-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs00607-012-0281-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00607-012-0281-1" target="_blank" >10.1007/s00607-012-0281-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Simulation of Generalized Oldroyd-B and Generalized Newtonian Fluid Flows
Popis výsledku v původním jazyce
This paper is dealing with numerical simulation of generalized Newtonian and generalized Oldroyd-B fluids with the aim of blood flow simulation. The Newtonian model of a fluid cannot capture all the phenomena in many fluids with complex microstructure, such as polymers, suspensions (also many biological fluids) and granular materials. The motion of polymeric fluids is described by the conservation of mass and momentum. One shall assume that the fluid is incompressible and temperature variations are negligible. When one considers viscoelastic behavior of polymeric fluids, the extra stress tensor depends not only on the current motion of the fluid, but also on the history of the motion. In this case the extra stress tensor is decomposed into its Newtonian part and its elastic part. Components of the elastic part of the extra stress tensor are computed using the Oldroyd-B constitutive equation. Time derivative of the pressure is added into the continuity equation (Artificial compressibili
Název v anglickém jazyce
Numerical Simulation of Generalized Oldroyd-B and Generalized Newtonian Fluid Flows
Popis výsledku anglicky
This paper is dealing with numerical simulation of generalized Newtonian and generalized Oldroyd-B fluids with the aim of blood flow simulation. The Newtonian model of a fluid cannot capture all the phenomena in many fluids with complex microstructure, such as polymers, suspensions (also many biological fluids) and granular materials. The motion of polymeric fluids is described by the conservation of mass and momentum. One shall assume that the fluid is incompressible and temperature variations are negligible. When one considers viscoelastic behavior of polymeric fluids, the extra stress tensor depends not only on the current motion of the fluid, but also on the history of the motion. In this case the extra stress tensor is decomposed into its Newtonian part and its elastic part. Components of the elastic part of the extra stress tensor are computed using the Oldroyd-B constitutive equation. Time derivative of the pressure is added into the continuity equation (Artificial compressibili
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computing
ISSN
0010-485X
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
"S587"-"S597"
Kód UT WoS článku
000338630100034
EID výsledku v databázi Scopus
—