Prediction of Highly Non-stationary Time Series Using Higher-Order Neural Units
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00322293" target="_blank" >RIV/68407700:21220/17:00322293 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-69835-9_74" target="_blank" >http://dx.doi.org/10.1007/978-3-319-69835-9_74</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-69835-9_74" target="_blank" >10.1007/978-3-319-69835-9_74</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Highly Non-stationary Time Series Using Higher-Order Neural Units
Popis výsledku v původním jazyce
Adaptive predictive models can use conventional and nonconventional neural networks for highly non-stationary time series prediction. However, conventional neural networks present a series of known drawbacks. This paper presents a brief discussion about this concern as well as how the basis of higher-order neural units can overcome some of them; it also describes a sliding window technique alongside the batch optimization technique for capturing the dynamics of non-stationary time series over a Quadratic Neural Unit, a special case of higher-order neural units. Finally, an experimental analysis is presented to demonstrate the effectiveness of the proposed approach.
Název v anglickém jazyce
Prediction of Highly Non-stationary Time Series Using Higher-Order Neural Units
Popis výsledku anglicky
Adaptive predictive models can use conventional and nonconventional neural networks for highly non-stationary time series prediction. However, conventional neural networks present a series of known drawbacks. This paper presents a brief discussion about this concern as well as how the basis of higher-order neural units can overcome some of them; it also describes a sliding window technique alongside the batch optimization technique for capturing the dynamics of non-stationary time series over a Quadratic Neural Unit, a special case of higher-order neural units. Finally, an experimental analysis is presented to demonstrate the effectiveness of the proposed approach.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances on P2P, Parallel, Grid, Cloud and Internet Computing
ISBN
978-3-319-69834-2
Počet stran výsledku
9
Strana od-do
787-795
Počet stran knihy
950
Název nakladatele
Springer, Cham
Místo vydání
—
Kód UT WoS kapitoly
—