Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Swelling and Deformation Responses of Porous Hydrogel Simulated with Finite Element Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00322048" target="_blank" >RIV/68407700:21220/18:00322048 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Swelling and Deformation Responses of Porous Hydrogel Simulated with Finite Element Method

  • Popis výsledku v původním jazyce

    Swelling and deformation responses of macromolecular hydrogels are important parameters in biological applications. Macroscopic deformation of simple geometry involves deformations of various geometries of pore walls dependent on object morphology. Local stresses and gradients of swelling exist even in undeformed state and are changed as a result of external deformation. The changes on microscale are important for applications, for instance, for cell cultivation in bioengineering. In this work, the behavior of hydrogel was modelled by finite element method (FEM). The model is developed for the calculation of equilibrium swelling and the deformation characteristics of swollen gels. The model is based on changes of Gibbs energy of a swollen network as described by a statistical-mechanical model of cross-linked polymeric hydrogel. Contributions to Gibbs energy due to polymer segments – solvent molecules mixing (Flory-Huggins type) and due to stretching of network chains of finite extensibility (elastic contribution) were used in the model. The elastic contribution is similar to the Gent model of hyperelasticity but the fully stretched chain limits are described more rigorously. The complete FEM model is programmed in the MATLAB. The open code allows monitoring of the progress of the calculation as well as implementation of any non-standard descriptions of changes of the Gibbs energy. So far, the model was applied to simple porous gel structures. The research was supported by the grant agency of the Czech Republic by the project No. 17-08531S “Computational design of hydrogel cell scaffolds”.

  • Název v anglickém jazyce

    Swelling and Deformation Responses of Porous Hydrogel Simulated with Finite Element Method

  • Popis výsledku anglicky

    Swelling and deformation responses of macromolecular hydrogels are important parameters in biological applications. Macroscopic deformation of simple geometry involves deformations of various geometries of pore walls dependent on object morphology. Local stresses and gradients of swelling exist even in undeformed state and are changed as a result of external deformation. The changes on microscale are important for applications, for instance, for cell cultivation in bioengineering. In this work, the behavior of hydrogel was modelled by finite element method (FEM). The model is developed for the calculation of equilibrium swelling and the deformation characteristics of swollen gels. The model is based on changes of Gibbs energy of a swollen network as described by a statistical-mechanical model of cross-linked polymeric hydrogel. Contributions to Gibbs energy due to polymer segments – solvent molecules mixing (Flory-Huggins type) and due to stretching of network chains of finite extensibility (elastic contribution) were used in the model. The elastic contribution is similar to the Gent model of hyperelasticity but the fully stretched chain limits are described more rigorously. The complete FEM model is programmed in the MATLAB. The open code allows monitoring of the progress of the calculation as well as implementation of any non-standard descriptions of changes of the Gibbs energy. So far, the model was applied to simple porous gel structures. The research was supported by the grant agency of the Czech Republic by the project No. 17-08531S “Computational design of hydrogel cell scaffolds”.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-08531S" target="_blank" >GA17-08531S: Komputačně navržené hydrogelové nosiče buněk.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů