Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Concept drift robust adaptive novelty detection for data streams

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00322656" target="_blank" >RIV/68407700:21220/18:00322656 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0925231218305253" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925231218305253</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2018.04.069" target="_blank" >10.1016/j.neucom.2018.04.069</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Concept drift robust adaptive novelty detection for data streams

  • Popis výsledku v původním jazyce

    In this paper we study the performance of two original adaptive unsupervised novelty detection methods (NDMs) on data with concept drift. Newly, the concept drift is considered as a challenging data imbalance that should be ignored by the NDMs, and only system changes and outliers represent novelty. The field of application for such NDMs is broad. For example, the method can be used as a supportive method for real-time system fault detection, for onset detection of events in biomedical signals, in monitoring of nonlinearly controlled processes, for event driven automated trading, etc. The two newly studied methods are the error and learning based novelty detection (ELBND) and the learning entropy (LE) based detection. These methods use both the error and weight increments of a (supervised) learning model. Here, we study these methods with normalized least-mean squares (NLMS) adaptive filter, and while the NDMs were studied on various real life tasks, newly, we carry out the study on two types of data streams with concept drift to analyze the general ability for unsupervised novelty detection. The two data streams, one with system changes, second with outliers, represent different novelty scenarios to demonstrate the performance of the proposed NDMs with concept drifts in data. Both tested NDMs work as a feature extractor. Thus, a classification framework is used for the evaluation of the obtained features and NDM benchmarking, where two other NDMs, one based on the adaptive model plain error, second using the sample entropy (SE), are used as the reference for the comparison to the proposed methods. The results show that both newly studied NDMs are superior to the merely use of the plain error of adaptive model and also to the sample entropy based detection while they are robust against the concept drift occurrence. (C) 2018 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Concept drift robust adaptive novelty detection for data streams

  • Popis výsledku anglicky

    In this paper we study the performance of two original adaptive unsupervised novelty detection methods (NDMs) on data with concept drift. Newly, the concept drift is considered as a challenging data imbalance that should be ignored by the NDMs, and only system changes and outliers represent novelty. The field of application for such NDMs is broad. For example, the method can be used as a supportive method for real-time system fault detection, for onset detection of events in biomedical signals, in monitoring of nonlinearly controlled processes, for event driven automated trading, etc. The two newly studied methods are the error and learning based novelty detection (ELBND) and the learning entropy (LE) based detection. These methods use both the error and weight increments of a (supervised) learning model. Here, we study these methods with normalized least-mean squares (NLMS) adaptive filter, and while the NDMs were studied on various real life tasks, newly, we carry out the study on two types of data streams with concept drift to analyze the general ability for unsupervised novelty detection. The two data streams, one with system changes, second with outliers, represent different novelty scenarios to demonstrate the performance of the proposed NDMs with concept drifts in data. Both tested NDMs work as a feature extractor. Thus, a classification framework is used for the evaluation of the obtained features and NDM benchmarking, where two other NDMs, one based on the adaptive model plain error, second using the sample entropy (SE), are used as the reference for the comparison to the proposed methods. The results show that both newly studied NDMs are superior to the merely use of the plain error of adaptive model and also to the sample entropy based detection while they are robust against the concept drift occurrence. (C) 2018 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20304 - Aerospace engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

    1872-8286

  • Svazek periodika

    309

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    46-53

  • Kód UT WoS článku

    000436622300005

  • EID výsledku v databázi Scopus

    2-s2.0-85048277986