Experimental and numerical investigation of optimized blade tip shapes-part i: Turbine rainbow rotor testing and CFD methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00349632" target="_blank" >RIV/68407700:21220/18:00349632 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1115/GT2018-76564" target="_blank" >https://doi.org/10.1115/GT2018-76564</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/GT2018-76564" target="_blank" >10.1115/GT2018-76564</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and numerical investigation of optimized blade tip shapes-part i: Turbine rainbow rotor testing and CFD methods
Popis výsledku v původním jazyce
Blade tip design and tip leakage flows are crucial aspects for the development of modern aero-engines. The inevitable clearance between stationary and rotating parts in turbine stages generates high-enthalpy unsteady leakage flows that strongly reduce the engine efficiency and can cause thermally induced blade failures. An improved understanding of the tip flow physics is essential to refine the current design strategies and achieve increased turbine aerothermal performance. However, while past studies have mainly focused on conventional tip shapes (flat tip or squealer geometries), the open literature suffers from a shortage of experimental and numerical data on advanced blade tip configurations of unshrouded rotors. This work presents a complete numerical and experimental investigation on the unsteady flow field of a high-pressure turbine, adopting three different blade tip profiles. The aerothermal characteristics of two novel high-performance tip geometries, one with a fully contoured shape and the other presenting a multicavity squealer-like tip with partially open external rims, are compared against the baseline performance of a regular squealer geometry. In the first part of this work, we describe the experimental setup, instrumentation and data processing techniques used to measure the unsteady aerothermal field of multiple blade tip geometries using the rainbow rotor approach. We report the timeaverage and time-resolved static pressure and heat transfer measured on the shroud of the turbine rotor.
Název v anglickém jazyce
Experimental and numerical investigation of optimized blade tip shapes-part i: Turbine rainbow rotor testing and CFD methods
Popis výsledku anglicky
Blade tip design and tip leakage flows are crucial aspects for the development of modern aero-engines. The inevitable clearance between stationary and rotating parts in turbine stages generates high-enthalpy unsteady leakage flows that strongly reduce the engine efficiency and can cause thermally induced blade failures. An improved understanding of the tip flow physics is essential to refine the current design strategies and achieve increased turbine aerothermal performance. However, while past studies have mainly focused on conventional tip shapes (flat tip or squealer geometries), the open literature suffers from a shortage of experimental and numerical data on advanced blade tip configurations of unshrouded rotors. This work presents a complete numerical and experimental investigation on the unsteady flow field of a high-pressure turbine, adopting three different blade tip profiles. The aerothermal characteristics of two novel high-performance tip geometries, one with a fully contoured shape and the other presenting a multicavity squealer-like tip with partially open external rims, are compared against the baseline performance of a regular squealer geometry. In the first part of this work, we describe the experimental setup, instrumentation and data processing techniques used to measure the unsteady aerothermal field of multiple blade tip geometries using the rainbow rotor approach. We report the timeaverage and time-resolved static pressure and heat transfer measured on the shroud of the turbine rotor.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 5B: Heat Transfer
ISBN
978-0-7918-5109-8
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
—
Název nakladatele
American Society of Mechanical Engineers - ASME
Místo vydání
New York
Místo konání akce
Lillestrom
Datum konání akce
11. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000456908500012