Finite volume methods for numerical simulation of the discharge motion described by different physical models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00331873" target="_blank" >RIV/68407700:21220/19:00331873 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10444-019-09706-9" target="_blank" >https://doi.org/10.1007/s10444-019-09706-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10444-019-09706-9" target="_blank" >10.1007/s10444-019-09706-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite volume methods for numerical simulation of the discharge motion described by different physical models
Popis výsledku v původním jazyce
This paper deals with the numerical solution of an ionization wave propagation in air, described by a coupled set of convection-diffusion-reaction equations and a Poisson equation. The standard three-species and more complex eleven-species models with simple chemistry are formulated. The PDEs are solved by a finite volume method that is theoretically second order in space and time on an unstructured adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convective and diffusive fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. The results of both models are compared in details for a test case. The influence of physically pertinent boundary conditions at electrodes is also presented. Finally, we deal with numerical accuracy study of implicit scheme in two variants for simplified standard model. It allows us in the future to compute simulta- neously and efficiently a process consisting of short time discharge propagation and long-term after-discharge phase or repetitively pulsed discharge.
Název v anglickém jazyce
Finite volume methods for numerical simulation of the discharge motion described by different physical models
Popis výsledku anglicky
This paper deals with the numerical solution of an ionization wave propagation in air, described by a coupled set of convection-diffusion-reaction equations and a Poisson equation. The standard three-species and more complex eleven-species models with simple chemistry are formulated. The PDEs are solved by a finite volume method that is theoretically second order in space and time on an unstructured adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convective and diffusive fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. The results of both models are compared in details for a test case. The influence of physically pertinent boundary conditions at electrodes is also presented. Finally, we deal with numerical accuracy study of implicit scheme in two variants for simplified standard model. It allows us in the future to compute simulta- neously and efficiently a process consisting of short time discharge propagation and long-term after-discharge phase or repetitively pulsed discharge.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Computational Mathematics
ISSN
1019-7168
e-ISSN
1572-9044
Svazek periodika
2019
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
2163-2189
Kód UT WoS článku
000480573200024
EID výsledku v databázi Scopus
2-s2.0-85068118406