Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaporation and condensation model for a cooling system of the LiPb cold trap device

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00333301" target="_blank" >RIV/68407700:21220/19:00333301 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.fusengdes.2019.03.152" target="_blank" >https://doi.org/10.1016/j.fusengdes.2019.03.152</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2019.03.152" target="_blank" >10.1016/j.fusengdes.2019.03.152</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaporation and condensation model for a cooling system of the LiPb cold trap device

  • Popis výsledku v původním jazyce

    The eutectic liquid metal LiPb is considered as one of the tritium breeders of the first fusion power reactors. The flowing liquid metal dissolves alloying elements of the structural steels and thus causes their corrosion. The proposed type of the cold trap is a device providing extraction of corrosion products from liquid metal by gravity separation, which occurs at lower temperatures than the operating conditions of LiPb in the fusion reactor blankets. The developed cold trap consists of three loops. The primary loop is designed for LiPb liquid metal flow purification. The proposed cooling of the primary loop is based on the water-steam natural convection with two basic principles; evaporation and condensation. The evaporation section supports the optimal heat transfer from the primary loop and the condenser section removes heat from the trap body to the third loop. To ensure the required conditions at all operational thermal loads the presence of the inert gas (argon) in the secondary loop is provided. However, the addition of the inert gas into the steam significantly reduces the heat and mass transfer to the condenser and consequently leads to degradation of the heat removal potential of the condensation. A 0D model is developed and applied to solve these processes. Validation of this model for the operational conditions and achieved results for the cold trap operational states are analyzed and discussed.

  • Název v anglickém jazyce

    Evaporation and condensation model for a cooling system of the LiPb cold trap device

  • Popis výsledku anglicky

    The eutectic liquid metal LiPb is considered as one of the tritium breeders of the first fusion power reactors. The flowing liquid metal dissolves alloying elements of the structural steels and thus causes their corrosion. The proposed type of the cold trap is a device providing extraction of corrosion products from liquid metal by gravity separation, which occurs at lower temperatures than the operating conditions of LiPb in the fusion reactor blankets. The developed cold trap consists of three loops. The primary loop is designed for LiPb liquid metal flow purification. The proposed cooling of the primary loop is based on the water-steam natural convection with two basic principles; evaporation and condensation. The evaporation section supports the optimal heat transfer from the primary loop and the condenser section removes heat from the trap body to the third loop. To ensure the required conditions at all operational thermal loads the presence of the inert gas (argon) in the secondary loop is provided. However, the addition of the inert gas into the steam significantly reduces the heat and mass transfer to the condenser and consequently leads to degradation of the heat removal potential of the condensation. A 0D model is developed and applied to solve these processes. Validation of this model for the operational conditions and achieved results for the cold trap operational states are analyzed and discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020455" target="_blank" >TE01020455: Centrum pokročilých jaderných technologií (CANUT)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

    1873-7196

  • Svazek periodika

    146

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    6

  • Strana od-do

    2199-2204

  • Kód UT WoS článku

    000488313700175

  • EID výsledku v databázi Scopus

    2-s2.0-85063866572