Damping a pendulum's swing by string length adjustment - Design and comparison of various control methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00337136" target="_blank" >RIV/68407700:21220/19:00337136 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00337136
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Damping a pendulum's swing by string length adjustment - Design and comparison of various control methods
Popis výsledku v původním jazyce
A novel nonlinear control theory based feedback controller is proposed to damp the oscillations of the suspended load (pendulum) using the active modification of the length of the suspension string. This setting is a highly nonlinear one since the approximate linearization around the equilibrium working point is neither controllable, nor asymptotically stabilizable. The nonlinear design of the control law is therefore based on the conveniently selected control Lyapunov function. The resulting control law is then compared to the previously developed time-delay feedback control law, both in simulations and using the laboratory experimental realization of the suspended load system. Despite the fact that in the simulations the time-delay feedback control law suppresses the oscillations better than the nonlinear control law, in the experiments the performance of the time-delay feedback and of the nonlinear control law are rather similar. Moreover, the former keeps the pendulum string length oscillating, the latter stabilizes the nominal string length as well. Finally, the numerical optimization shows that the ideal damping would be provided by the impulsive-like control producing piece-wise constant string length dynamics.
Název v anglickém jazyce
Damping a pendulum's swing by string length adjustment - Design and comparison of various control methods
Popis výsledku anglicky
A novel nonlinear control theory based feedback controller is proposed to damp the oscillations of the suspended load (pendulum) using the active modification of the length of the suspension string. This setting is a highly nonlinear one since the approximate linearization around the equilibrium working point is neither controllable, nor asymptotically stabilizable. The nonlinear design of the control law is therefore based on the conveniently selected control Lyapunov function. The resulting control law is then compared to the previously developed time-delay feedback control law, both in simulations and using the laboratory experimental realization of the suspended load system. Despite the fact that in the simulations the time-delay feedback control law suppresses the oscillations better than the nonlinear control law, in the experiments the performance of the time-delay feedback and of the nonlinear control law are rather similar. Moreover, the former keeps the pendulum string length oscillating, the latter stabilizes the nominal string length as well. Finally, the numerical optimization shows that the ideal damping would be provided by the impulsive-like control producing piece-wise constant string length dynamics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-17398S" target="_blank" >GA16-17398S: Kompenzátory s dopravním zpožděním pro flexibilní systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2019 American Control Conference (ACC)
ISBN
978-1-5386-7926-5
ISSN
0743-1619
e-ISSN
—
Počet stran výsledku
7
Strana od-do
4399-4405
Název nakladatele
IEEE
Místo vydání
NEW YORK, NY
Místo konání akce
Philadelphia
Datum konání akce
10. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—