Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00340425" target="_blank" >RIV/68407700:21220/20:00340425 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1115/1.4045471" target="_blank" >https://doi.org/10.1115/1.4045471</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4045471" target="_blank" >10.1115/1.4045471</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine

  • Popis výsledku v původním jazyce

    The efficiency of modern axial turbomachinery is strongly driven by the secondary flows within the vane or blade passages. The secondary flows are characterized by a complex pattern of vortical structures that origin, interact and dissipate along the turbine gas path. The endwall flows are responsible for the generation of a significant part of the overall turbine loss because of the dissipation of secondary kinetic energy and mixing-out of non-uniform momentum flows. The understanding and analysis of secondary flows requires a reliable vortex identification technique to predict and analyse the impact of specific turbine designs on the turbine performance. However, literature shows a remarkable lack of general methods to detect vortices and to determine the location of their cores and to quantify their strength. This paper presents a novel technique for the identification of vortical structures in a general 3D flow field, based on a triple decomposition of motion proposed by Kolář. The present method allows to locate automatically the core of each vortex, quantify its strength and determine the vortex bounding surface. The output may be used to visualize the turbine vortical structures for the purpose of interpreting the complex three-dimensional viscous flow field, as well as to highlight any case-to-case variations by quantifying the vortex strength and location. The vortex identification method is applied to a high-pressure turbine with three optimized blade tip geometries. The 3D flowfield is obtained by CFD computations performed with Numeca FINE/Open. The computational model uses steady-state RANS equations closed by the Spalart-Allmaras turbulence model. Although developed for turbomachinery applications, the vortex identification method proposed in this work is of general applicability to any three-dimensional flow-field.

  • Název v anglickém jazyce

    A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine

  • Popis výsledku anglicky

    The efficiency of modern axial turbomachinery is strongly driven by the secondary flows within the vane or blade passages. The secondary flows are characterized by a complex pattern of vortical structures that origin, interact and dissipate along the turbine gas path. The endwall flows are responsible for the generation of a significant part of the overall turbine loss because of the dissipation of secondary kinetic energy and mixing-out of non-uniform momentum flows. The understanding and analysis of secondary flows requires a reliable vortex identification technique to predict and analyse the impact of specific turbine designs on the turbine performance. However, literature shows a remarkable lack of general methods to detect vortices and to determine the location of their cores and to quantify their strength. This paper presents a novel technique for the identification of vortical structures in a general 3D flow field, based on a triple decomposition of motion proposed by Kolář. The present method allows to locate automatically the core of each vortex, quantify its strength and determine the vortex bounding surface. The output may be used to visualize the turbine vortical structures for the purpose of interpreting the complex three-dimensional viscous flow field, as well as to highlight any case-to-case variations by quantifying the vortex strength and location. The vortex identification method is applied to a high-pressure turbine with three optimized blade tip geometries. The 3D flowfield is obtained by CFD computations performed with Numeca FINE/Open. The computational model uses steady-state RANS equations closed by the Spalart-Allmaras turbulence model. Although developed for turbomachinery applications, the vortex identification method proposed in this work is of general applicability to any three-dimensional flow-field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20304 - Aerospace engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Turbomachinery

  • ISSN

    0889-504X

  • e-ISSN

    1528-8900

  • Svazek periodika

    142

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000525375000004

  • EID výsledku v databázi Scopus