Effect of hydrodynamics on the formation and removal of microalgal biofilm in photobioreactors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00343962" target="_blank" >RIV/68407700:21220/20:00343962 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.biosystemseng.2020.10.014" target="_blank" >https://doi.org/10.1016/j.biosystemseng.2020.10.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biosystemseng.2020.10.014" target="_blank" >10.1016/j.biosystemseng.2020.10.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of hydrodynamics on the formation and removal of microalgal biofilm in photobioreactors
Popis výsledku v původním jazyce
To prevent the formation of biofilm or to remove already formed biofilm on the transparent walls of the closed cultivation systems, it is important to ensure that there are sufficient wall shear stresses to disrupt the stability of the biofilm. A pilot-scale flat-panel photobioreactor and laboratory tubular system were used to determine the critical value of the wall shear stress. The formation of biofilm on transparent walls of the cultivation systems reduces light penetration into the cultivation medium, which can subsequently reduce the production of microalgae, since light radiation a key parameter influencing the growth of microalgae. To study the influence of hydrodynamic conditions on the prevention of biofilm formation, a numerical model of a flat-panel photobioreactor was validated based on the experimental data. Using the validated model, a critical value of wall shear stress that above which avoids the formation of biofilm was defined to be 0.2 Pa. To refine the values from the numerical model, and to investigate the influence of hydrodynamic conditions on the process of disruption of the formed and stabilized biofilm, a simple experimental tubular system with the one-dimensional flow was developed. For one-dimensional flow, it is easier to describe the hydrodynamic behaviour and more precisely define the parameters influencing biofilm formation. The experiments in this simplified tubular system were focused on removing already formed biofilm. The formed biofilm on the transparent wall was completely removed from the surface when the wall shear stress reached a value of 53 Pa. However, the stability of the biofilm was already disturbed at a value of 6 Pa. The resulting values of critical wall shear stress could be used to select the operating conditions of the cultivation systems or to adjust their geometry affecting the hydrodynamic conditions.
Název v anglickém jazyce
Effect of hydrodynamics on the formation and removal of microalgal biofilm in photobioreactors
Popis výsledku anglicky
To prevent the formation of biofilm or to remove already formed biofilm on the transparent walls of the closed cultivation systems, it is important to ensure that there are sufficient wall shear stresses to disrupt the stability of the biofilm. A pilot-scale flat-panel photobioreactor and laboratory tubular system were used to determine the critical value of the wall shear stress. The formation of biofilm on transparent walls of the cultivation systems reduces light penetration into the cultivation medium, which can subsequently reduce the production of microalgae, since light radiation a key parameter influencing the growth of microalgae. To study the influence of hydrodynamic conditions on the prevention of biofilm formation, a numerical model of a flat-panel photobioreactor was validated based on the experimental data. Using the validated model, a critical value of wall shear stress that above which avoids the formation of biofilm was defined to be 0.2 Pa. To refine the values from the numerical model, and to investigate the influence of hydrodynamic conditions on the process of disruption of the formed and stabilized biofilm, a simple experimental tubular system with the one-dimensional flow was developed. For one-dimensional flow, it is easier to describe the hydrodynamic behaviour and more precisely define the parameters influencing biofilm formation. The experiments in this simplified tubular system were focused on removing already formed biofilm. The formed biofilm on the transparent wall was completely removed from the surface when the wall shear stress reached a value of 53 Pa. However, the stability of the biofilm was already disturbed at a value of 6 Pa. The resulting values of critical wall shear stress could be used to select the operating conditions of the cultivation systems or to adjust their geometry affecting the hydrodynamic conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biosystems Engineering
ISSN
1537-5110
e-ISSN
1537-5129
Svazek periodika
200
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
315-327
Kód UT WoS článku
000598489200009
EID výsledku v databázi Scopus
2-s2.0-85095745571