Tangential Fluid Flow in a Convective Dryer with Drying Technology Using Nebulization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00344833" target="_blank" >RIV/68407700:21220/20:00344833 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.48158/MeCCE-14.DG.10.08" target="_blank" >https://doi.org/10.48158/MeCCE-14.DG.10.08</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48158/MeCCE-14.DG.10.08" target="_blank" >10.48158/MeCCE-14.DG.10.08</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tangential Fluid Flow in a Convective Dryer with Drying Technology Using Nebulization
Popis výsledku v původním jazyce
Research focuses on tangential fluid flow of air inside a dryer. Nebulisation drying technology is used in this case to produce dewatered protein nanoparticles. The fluid containing protein particles is mixed with a supercritical fluid (carbon dioxide) and transported into the drying chamber under high pressure. The advantage of technology is low temperature of the drying air, usually in the range of 40 to 60 °C. It leads to lower energy consumption used to heat the drying air by comparison with conventional convective drying. The aim is to compare tangential fluid flow under different operational conditions of the dryer using nebulisation drying technology and to evaluate the most suitable option to provide uniform and required distribution of the air based on the data obtained from experiments and numerical simulations. In this contribution, two configurations of the dryer are presented, both with a unique arrangement of four tangential inlets which are located on top of the drying chamber around its perimeter. Firstly, experiments are performed and subsequently numerical simulations are used to validate the experimental data. Velocity field is measured by a hand-operated hot wire anemometer. Ansys-Fluent and OpenFOAM are used as CFD software in the numerical simulation part of the research. A structured grid is created and a two equation model of turbulence is applied, specifically k-ε. Boundary conditions are defined based on the experimental data (velocity, mass flow rate). Experiments and numerical simulations are evaluated and compared. In the first case, configuration A, data obtained from experiments do not correspond with results of numerical simulation. In the second case, configuration B, a match of the experimental data and results of numerical simulation is achieved though the same turbulence model is applied as in the first case.
Název v anglickém jazyce
Tangential Fluid Flow in a Convective Dryer with Drying Technology Using Nebulization
Popis výsledku anglicky
Research focuses on tangential fluid flow of air inside a dryer. Nebulisation drying technology is used in this case to produce dewatered protein nanoparticles. The fluid containing protein particles is mixed with a supercritical fluid (carbon dioxide) and transported into the drying chamber under high pressure. The advantage of technology is low temperature of the drying air, usually in the range of 40 to 60 °C. It leads to lower energy consumption used to heat the drying air by comparison with conventional convective drying. The aim is to compare tangential fluid flow under different operational conditions of the dryer using nebulisation drying technology and to evaluate the most suitable option to provide uniform and required distribution of the air based on the data obtained from experiments and numerical simulations. In this contribution, two configurations of the dryer are presented, both with a unique arrangement of four tangential inlets which are located on top of the drying chamber around its perimeter. Firstly, experiments are performed and subsequently numerical simulations are used to validate the experimental data. Velocity field is measured by a hand-operated hot wire anemometer. Ansys-Fluent and OpenFOAM are used as CFD software in the numerical simulation part of the research. A structured grid is created and a two equation model of turbulence is applied, specifically k-ε. Boundary conditions are defined based on the experimental data (velocity, mass flow rate). Experiments and numerical simulations are evaluated and compared. In the first case, configuration A, data obtained from experiments do not correspond with results of numerical simulation. In the second case, configuration B, a match of the experimental data and results of numerical simulation is achieved though the same turbulence model is applied as in the first case.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th Mediterranean Congress of Chemical Engineering
ISBN
978-84-09-25244-2
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
—
Název nakladatele
Sociedad Española de Química Industrial e Ingeniería Química
Místo vydání
—
Místo konání akce
Barcelona
Datum konání akce
16. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—