The Flow-Induced Vibrations of Vocal Folds Approximated by the Finite Element Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00345039" target="_blank" >RIV/68407700:21220/20:00345039 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-15-8049-9_23" target="_blank" >https://doi.org/10.1007/978-981-15-8049-9_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-15-8049-9_23" target="_blank" >10.1007/978-981-15-8049-9_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Flow-Induced Vibrations of Vocal Folds Approximated by the Finite Element Method
Popis výsledku v původním jazyce
This paper is interested in mathematical model and numerical simulation of the flow-induced vibrations of human vocal folds model. The elastic tissue of the vocal fold is described by the linear elasticity and the viscous fluid flow in the glottal channel is modelled with the aid of the incompressible Navier-Stokes equations. To incorporate the time change of the fluid domain into the flow description, the arbitrary Lagrangian-Eulerian (ALE) method is used. A special attention is paid to inlet boundary conditions. Besides the classical Dirichlet boundary condition the penalization approach is presented, which allows to relax the exact inlet velocity during the channel closing phase. Such a situation is highly interesting for simulation of human phonation. The developed numerical schemes for the fluid flow and the elastic body are implemented by an in-house solver based on the finite element method. Specially, the fluid flow scheme is approximated with the help of SUPG and PSPG stabilization methods. The implemented numerical partitioned scheme is strongly coupled. Finally, the numerical results of flow induced vibrations are presented and effects of the aforementioned inlet boundary conditions are discussed.
Název v anglickém jazyce
The Flow-Induced Vibrations of Vocal Folds Approximated by the Finite Element Method
Popis výsledku anglicky
This paper is interested in mathematical model and numerical simulation of the flow-induced vibrations of human vocal folds model. The elastic tissue of the vocal fold is described by the linear elasticity and the viscous fluid flow in the glottal channel is modelled with the aid of the incompressible Navier-Stokes equations. To incorporate the time change of the fluid domain into the flow description, the arbitrary Lagrangian-Eulerian (ALE) method is used. A special attention is paid to inlet boundary conditions. Besides the classical Dirichlet boundary condition the penalization approach is presented, which allows to relax the exact inlet velocity during the channel closing phase. Such a situation is highly interesting for simulation of human phonation. The developed numerical schemes for the fluid flow and the elastic body are implemented by an in-house solver based on the finite element method. Specially, the fluid flow scheme is approximated with the help of SUPG and PSPG stabilization methods. The implemented numerical partitioned scheme is strongly coupled. Finally, the numerical results of flow induced vibrations are presented and effects of the aforementioned inlet boundary conditions are discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04477S" target="_blank" >GA19-04477S: Modelování a měření strukturálně-akustických interakcí s prouděním v biomechanice tvorby hlasu člověka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Vibration Problems
ISBN
978-981-15-8049-9
ISSN
—
e-ISSN
2195-4364
Počet stran výsledku
12
Strana od-do
377-388
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Crete
Datum konání akce
1. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—