Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00345247" target="_blank" >RIV/68407700:21220/21:00345247 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/ma14010206" target="_blank" >https://doi.org/10.3390/ma14010206</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma14010206" target="_blank" >10.3390/ma14010206</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
Popis výsledku v původním jazyce
The paper discusses one of the key features in the multiaxial fatigue strength evaluation—the procedure in which the stress path is analyzed to provide relevant measures of parameters required by multiaxial criteria. The selection of this procedure affects the complete equivalent stress derived for any multiaxial load combinations. Three major concepts—the minimum circumscribed circle, minimum circumscribed ellipse, and moment of inertia methods—are described. Analytical solutions of their evaluation for multiaxial stress state with components described by harmonic functions are provided. The concepts are validated on available experimental data when included into six different multiaxial fatigue strength criteria. The results show that the moment of inertia results in too conservative results. Differences between both methods of circumscribed entities are much smaller. There are indications however that the minimum circumscribed ellipse solution works better for critical plane criteria and for the criteria based on stress tensor transformation into the Ilyushin deviatoric space. On the other hand, the minimum circumscribed ellipse solution tends to shift integral criteria to the conservative side.
Název v anglickém jazyce
Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
Popis výsledku anglicky
The paper discusses one of the key features in the multiaxial fatigue strength evaluation—the procedure in which the stress path is analyzed to provide relevant measures of parameters required by multiaxial criteria. The selection of this procedure affects the complete equivalent stress derived for any multiaxial load combinations. Three major concepts—the minimum circumscribed circle, minimum circumscribed ellipse, and moment of inertia methods—are described. Analytical solutions of their evaluation for multiaxial stress state with components described by harmonic functions are provided. The concepts are validated on available experimental data when included into six different multiaxial fatigue strength criteria. The results show that the moment of inertia results in too conservative results. Differences between both methods of circumscribed entities are much smaller. There are indications however that the minimum circumscribed ellipse solution works better for critical plane criteria and for the criteria based on stress tensor transformation into the Ilyushin deviatoric space. On the other hand, the minimum circumscribed ellipse solution tends to shift integral criteria to the conservative side.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000606190000001
EID výsledku v databázi Scopus
2-s2.0-85098769941