Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00350520" target="_blank" >RIV/68407700:21220/21:00350520 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jece.2021.105768" target="_blank" >https://doi.org/10.1016/j.jece.2021.105768</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2021.105768" target="_blank" >10.1016/j.jece.2021.105768</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors
Popis výsledku v původním jazyce
Appropriate hydrodynamic conditions are crucial in photobioreactors (PBR) in order to prevent sedimentation of microalgal biomass and to ensure the uniform exposure of microalgae cells to light and nutrients. Hydrodynamic conditions are also important to guarantee efficient mass transfer and proper shear stress on the transparent walls of the PBR, which can avoid the formation of undesired biofilm. Numerical simulations based on Computational Fluid Dynamics (CFD) can assist to improve the hydrodynamic design and optimization of PBRs. In this study, CFD was used as a tool to investigate the hydrodynamics of a hybrid horizontal tubular PBR designed for microalgae cultivation and wastewater treatment. The flow regime, average circulation time and shear stress distribution in the tubes were evaluated. To establish the reliability of the simulation study, the CFD model was validated using tracer experimental tests and ultrasonic flow meter measurements. Results showed that the hydrodynamic conditions in the tubes resembled plug flow with small axial dispersion. The simulated velocity profile in the tube corresponded to the analytical velocity profile based on experimental data. Simulations also showed that, even increasing flow velocities, low velocity zones were present in some zones of the PBR. The shear stress distribution in the tubes showed values higher enough to reduce or avoid the formation of biofilm, nevertheless the shear stress value is not sufficient to remove the already formed biofilm. Based on the numerical investigation and practical evaluation, this study demonstrated that CFD is a useful tool to optimize PBR design and operation in order to enhance microalgae production and boost the scale-up of this technology.
Název v anglickém jazyce
Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors
Popis výsledku anglicky
Appropriate hydrodynamic conditions are crucial in photobioreactors (PBR) in order to prevent sedimentation of microalgal biomass and to ensure the uniform exposure of microalgae cells to light and nutrients. Hydrodynamic conditions are also important to guarantee efficient mass transfer and proper shear stress on the transparent walls of the PBR, which can avoid the formation of undesired biofilm. Numerical simulations based on Computational Fluid Dynamics (CFD) can assist to improve the hydrodynamic design and optimization of PBRs. In this study, CFD was used as a tool to investigate the hydrodynamics of a hybrid horizontal tubular PBR designed for microalgae cultivation and wastewater treatment. The flow regime, average circulation time and shear stress distribution in the tubes were evaluated. To establish the reliability of the simulation study, the CFD model was validated using tracer experimental tests and ultrasonic flow meter measurements. Results showed that the hydrodynamic conditions in the tubes resembled plug flow with small axial dispersion. The simulated velocity profile in the tube corresponded to the analytical velocity profile based on experimental data. Simulations also showed that, even increasing flow velocities, low velocity zones were present in some zones of the PBR. The shear stress distribution in the tubes showed values higher enough to reduce or avoid the formation of biofilm, nevertheless the shear stress value is not sufficient to remove the already formed biofilm. Based on the numerical investigation and practical evaluation, this study demonstrated that CFD is a useful tool to optimize PBR design and operation in order to enhance microalgae production and boost the scale-up of this technology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental CHemical Engineering
ISSN
2213-2929
e-ISSN
2213-3437
Svazek periodika
9
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000714639400003
EID výsledku v databázi Scopus
2-s2.0-85107798194