Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00352423" target="_blank" >RIV/68407700:21220/21:00352423 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/71226401:_____/21:N0100491
Výsledek na webu
<a href="https://doi.org/10.3390/ma14071654" target="_blank" >https://doi.org/10.3390/ma14071654</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma14071654" target="_blank" >10.3390/ma14071654</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam
Popis výsledku v původním jazyce
Rigid polyurethane (PUR) foam, which has an extensive range of construction, engineering, and healthcare applications, is commonly used in technical practice. PUR foam is a brittle material, and its mechanical material properties are strongly dependent on temperature and strain rate. Our work aimed to create a robust FE model enabling the simulation of PUR foam machining and verify the results of FE simulations using the experiments' results. We created a complex FE model using the Arbitrary Lagrangian-Eulerian (ALE) method. In the developed FE model, a constitutive material model was used in which the dependence of the strain rate, damage initiation, damage propagation, and plastic deformation on temperature was implemented. To verify the FE analyses' results with experimentally measured data, we measured the maximum temperature during PUR foam drilling with different densities (10, 25, and 40 PCF) and at various cutting speeds. The FE models with a constant cutting speed of 500 mm/s and various PUR foam densities led to slightly higher Tmax values, where the differences were 13.1% (10 PCF), 7.0% (25 PCF), and 10.0% (40 PCF). The same situation was observed for the simulation results related to various cutting speeds at a constant PUR foam density of 40 PCF, where the differences were 25.3% (133 mm/s), 10.1% (500 mm/s), and 15.5% (833 mm/s). The presented results show that the ALE method provides a good match with the experimental data and can be used for accurate simulation of rigid PUR foam machining.
Název v anglickém jazyce
Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam
Popis výsledku anglicky
Rigid polyurethane (PUR) foam, which has an extensive range of construction, engineering, and healthcare applications, is commonly used in technical practice. PUR foam is a brittle material, and its mechanical material properties are strongly dependent on temperature and strain rate. Our work aimed to create a robust FE model enabling the simulation of PUR foam machining and verify the results of FE simulations using the experiments' results. We created a complex FE model using the Arbitrary Lagrangian-Eulerian (ALE) method. In the developed FE model, a constitutive material model was used in which the dependence of the strain rate, damage initiation, damage propagation, and plastic deformation on temperature was implemented. To verify the FE analyses' results with experimentally measured data, we measured the maximum temperature during PUR foam drilling with different densities (10, 25, and 40 PCF) and at various cutting speeds. The FE models with a constant cutting speed of 500 mm/s and various PUR foam densities led to slightly higher Tmax values, where the differences were 13.1% (10 PCF), 7.0% (25 PCF), and 10.0% (40 PCF). The same situation was observed for the simulation results related to various cutting speeds at a constant PUR foam density of 40 PCF, where the differences were 25.3% (133 mm/s), 10.1% (500 mm/s), and 15.5% (833 mm/s). The presented results show that the ALE method provides a good match with the experimental data and can be used for accurate simulation of rigid PUR foam machining.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-25821S" target="_blank" >GA17-25821S: Hodnocení a modelování teplotního pole při obrábění nekovových materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000638692400001
EID výsledku v databázi Scopus
2-s2.0-85103958743