Integrated force interaction simulation model for milling strategy optimization of thin-walled Blisk blade machining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00352903" target="_blank" >RIV/68407700:21220/21:00352903 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.procir.2021.09.030" target="_blank" >https://doi.org/10.1016/j.procir.2021.09.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procir.2021.09.030" target="_blank" >10.1016/j.procir.2021.09.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated force interaction simulation model for milling strategy optimization of thin-walled Blisk blade machining
Popis výsledku v původním jazyce
Complex shaped thin-walled blades that are extensively used in jet engines or stream turbines are very difficult to machine due to low rigidity of the blades, typically limited space between the blades and strict requirements on the surface quality and accuracy. The paper focuses on multi-axis machining of thin-walled and complex shaped Blisk blades made of aluminium alloys. The resulting surface quality and accuracy is mainly affected by the risk of elevated vibration occurrence, both forced and self-excited, and static deflections between the compliant tool and workpiece. An innovative integration of the transformed FE model of the blade into virtual machining simulation has been proposed, allowing to effectively solve the complex optimization task considering both the criterion of stable machining condition and static deflections as well. When choosing a machining strategy and cutting conditions, there are many variables that fundamentally affect the process. These variables are not easy to choose correctly the first time, so it is advisable to choose to use a simulation model in production preparation. The proposed simulation model allowed to effectively optimize the process parameters to keep the machining process stable and the static deformation of tool and workpiece under a defined level. The proposed model and optimization strategy was validated on a thin-walled blade machining. At the top part of the blade, the surface roughness decreased from 1.6 Ra to 0.84 Ra, and the maximum deviations from the reference model were reduced from 0.18 mm to 0.08 mm.
Název v anglickém jazyce
Integrated force interaction simulation model for milling strategy optimization of thin-walled Blisk blade machining
Popis výsledku anglicky
Complex shaped thin-walled blades that are extensively used in jet engines or stream turbines are very difficult to machine due to low rigidity of the blades, typically limited space between the blades and strict requirements on the surface quality and accuracy. The paper focuses on multi-axis machining of thin-walled and complex shaped Blisk blades made of aluminium alloys. The resulting surface quality and accuracy is mainly affected by the risk of elevated vibration occurrence, both forced and self-excited, and static deflections between the compliant tool and workpiece. An innovative integration of the transformed FE model of the blade into virtual machining simulation has been proposed, allowing to effectively solve the complex optimization task considering both the criterion of stable machining condition and static deflections as well. When choosing a machining strategy and cutting conditions, there are many variables that fundamentally affect the process. These variables are not easy to choose correctly the first time, so it is advisable to choose to use a simulation model in production preparation. The proposed simulation model allowed to effectively optimize the process parameters to keep the machining process stable and the static deformation of tool and workpiece under a defined level. The proposed model and optimization strategy was validated on a thin-walled blade machining. At the top part of the blade, the surface roughness decreased from 1.6 Ra to 0.84 Ra, and the maximum deviations from the reference model were reduced from 0.18 mm to 0.08 mm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia CIRP
ISBN
—
ISSN
2212-8271
e-ISSN
—
Počet stran výsledku
6
Strana od-do
174-179
Název nakladatele
Elsevier B.V.
Místo vydání
Amsterdam
Místo konání akce
Ljubljana
Datum konání akce
15. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—