Fault Diagnosis in Manufacturing Systems Using Machine Vision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00353844" target="_blank" >RIV/68407700:21220/21:00353844 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/PC52310.2021.9447495" target="_blank" >https://doi.org/10.1109/PC52310.2021.9447495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PC52310.2021.9447495" target="_blank" >10.1109/PC52310.2021.9447495</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fault Diagnosis in Manufacturing Systems Using Machine Vision
Popis výsledku v původním jazyce
This paper describes the design and the verification of the method of fault diagnosis of production systems. A diagnosis system usually uses data obtained from a control loop (sensors, actuators, etc.). Unfortunately, clearly identify the fault is difficult or impossible. One set of symptoms can corresponds to more than one error. The conventional solution is to use additional sensors, however, this approach could lead to a parallel backup of the whole system. Here proposed solution is to use machine vision using OpenCV to obtain additional information about the state of the system, extend the set of symptoms and use them in the diagnostic module. In this work proposed diagnostic system is an extension of the previous designed one. A camera sensor was added. The data from the camera is evaluated and the diagnostic relevant objects are detected. These data are incorporated into the fault diagnostic system. The system was implemented and has been tested at a real simple electro-pneumatic circuit. The fault diagnostic system can detect hardware faults in the drive control loop like an electrical disconnection, low-pressure level, sensor, solenoid or PLC periphery malfunction.
Název v anglickém jazyce
Fault Diagnosis in Manufacturing Systems Using Machine Vision
Popis výsledku anglicky
This paper describes the design and the verification of the method of fault diagnosis of production systems. A diagnosis system usually uses data obtained from a control loop (sensors, actuators, etc.). Unfortunately, clearly identify the fault is difficult or impossible. One set of symptoms can corresponds to more than one error. The conventional solution is to use additional sensors, however, this approach could lead to a parallel backup of the whole system. Here proposed solution is to use machine vision using OpenCV to obtain additional information about the state of the system, extend the set of symptoms and use them in the diagnostic module. In this work proposed diagnostic system is an extension of the previous designed one. A camera sensor was added. The data from the camera is evaluated and the diagnostic relevant objects are detected. These data are incorporated into the fault diagnostic system. The system was implemented and has been tested at a real simple electro-pneumatic circuit. The fault diagnostic system can detect hardware faults in the drive control loop like an electrical disconnection, low-pressure level, sensor, solenoid or PLC periphery malfunction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23rd International Conference on Process Control
ISBN
978-1-6654-0330-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
313-318
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Štrbské Pleso
Datum konání akce
1. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000723653400053