Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Molecular dynamics simulations of nitrogen ion implantation into α-titanium target

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00354294" target="_blank" >RIV/68407700:21220/21:00354294 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21340/21:00354294

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Molecular dynamics simulations of nitrogen ion implantation into α-titanium target

  • Popis výsledku v původním jazyce

    Implantation of nitrogen particles into titanium target changes (improves) its hardness and tribological properties in the depth ranging from a few up to hundreds of nanometers. In order to understand how these properties are influenced, it is important to determine the N concentration across the depth, i.e., atomic distribution, of the modified target. However, different experimental methods determining atomic distributions are subjected to various instrumental errors and samples imperfections. To obtain expected atomic distributions without such errors, computer simulations are being advantageously used. In this work, using atomistic molecular dynamics (MD) method and our self-implemented time saving algorithm for ion implantation, we predict N depth distributions and their characteristics (N concentration maxima, corresponding depths, and full width at half maxima) in α-Ti as a function of N fluences (within 0.25 - 5.00 * 1017 ions/cm2 range and with 90 kV accelerating voltage). Single N particles and N2 molecules are implanted with the ratio of N to N2 = 30 % : 70 %. The MD data are compared with fast standard Monte Carlo simulations coded in Transport of Ions in Matter (TRIM) and with experimental profiles obtained by Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge-Optical Emission Spectrometry (GD-OES). We confirm that the MD distributions improve TRIM predictions, have in general good correspondence with the experiments, and suggest expected distributions for an ideal implantation situation, i.e., stripped out of instrumental measuring errors and samples defects.

  • Název v anglickém jazyce

    Molecular dynamics simulations of nitrogen ion implantation into α-titanium target

  • Popis výsledku anglicky

    Implantation of nitrogen particles into titanium target changes (improves) its hardness and tribological properties in the depth ranging from a few up to hundreds of nanometers. In order to understand how these properties are influenced, it is important to determine the N concentration across the depth, i.e., atomic distribution, of the modified target. However, different experimental methods determining atomic distributions are subjected to various instrumental errors and samples imperfections. To obtain expected atomic distributions without such errors, computer simulations are being advantageously used. In this work, using atomistic molecular dynamics (MD) method and our self-implemented time saving algorithm for ion implantation, we predict N depth distributions and their characteristics (N concentration maxima, corresponding depths, and full width at half maxima) in α-Ti as a function of N fluences (within 0.25 - 5.00 * 1017 ions/cm2 range and with 90 kV accelerating voltage). Single N particles and N2 molecules are implanted with the ratio of N to N2 = 30 % : 70 %. The MD data are compared with fast standard Monte Carlo simulations coded in Transport of Ions in Matter (TRIM) and with experimental profiles obtained by Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge-Optical Emission Spectrometry (GD-OES). We confirm that the MD distributions improve TRIM predictions, have in general good correspondence with the experiments, and suggest expected distributions for an ideal implantation situation, i.e., stripped out of instrumental measuring errors and samples defects.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů