IMPLEMENTATION OF TURBULENCE DAMPING IN THE OPENFOAM MULTIPHASE FLOW SOLVER INTERFOAM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00353447" target="_blank" >RIV/68407700:21220/22:00353447 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24425/ather.2022.140923" target="_blank" >https://doi.org/10.24425/ather.2022.140923</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24425/ather.2022.140923" target="_blank" >10.24425/ather.2022.140923</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IMPLEMENTATION OF TURBULENCE DAMPING IN THE OPENFOAM MULTIPHASE FLOW SOLVER INTERFOAM
Popis výsledku v původním jazyce
In the presented work Egorov’s approach (adding a source term to the ω-equation in the k-ω model, which mimics the damping of turbulence close to a solid wall) was implemented in on the subclass of shear stress transport models. Hence, turbulence damping is available for all shear stress transport type models, including hybrid models that are based on the ω-equation. It is shown that turbulence damping improves the prediction of the axial velocity profile not only for Reynolds-averaged Navier–Stokes simulation but also for detached eddy simulation and delayed detached eddy simulation models. Furthermore, it leads to a more realistic estimation of the pressure drop and, hence, to a more correct prediction of the liquid level. In this paper, simulation results for four different turbulence models are presented and validated by comparison with experimental data. Furthermore, the influence of the magnitude of the damping factor on the pressure drop in the channel is investigated for a variety of different gas-to-liquid flow rate ratios. These investigations show that higher gas-to-liquid flow rate ratios require higher damping factors to correctly predict the pressure drop. In the end, advice is formulated on how an appropriate damping factor can be determined for a specific test case.
Název v anglickém jazyce
IMPLEMENTATION OF TURBULENCE DAMPING IN THE OPENFOAM MULTIPHASE FLOW SOLVER INTERFOAM
Popis výsledku anglicky
In the presented work Egorov’s approach (adding a source term to the ω-equation in the k-ω model, which mimics the damping of turbulence close to a solid wall) was implemented in on the subclass of shear stress transport models. Hence, turbulence damping is available for all shear stress transport type models, including hybrid models that are based on the ω-equation. It is shown that turbulence damping improves the prediction of the axial velocity profile not only for Reynolds-averaged Navier–Stokes simulation but also for detached eddy simulation and delayed detached eddy simulation models. Furthermore, it leads to a more realistic estimation of the pressure drop and, hence, to a more correct prediction of the liquid level. In this paper, simulation results for four different turbulence models are presented and validated by comparison with experimental data. Furthermore, the influence of the magnitude of the damping factor on the pressure drop in the channel is investigated for a variety of different gas-to-liquid flow rate ratios. These investigations show that higher gas-to-liquid flow rate ratios require higher damping factors to correctly predict the pressure drop. In the end, advice is formulated on how an appropriate damping factor can be determined for a specific test case.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archives of Thermodynamics
ISSN
1231-0956
e-ISSN
2083-6023
Svazek periodika
43
Číslo periodika v rámci svazku
140923
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
23
Strana od-do
21-43
Kód UT WoS článku
000789653900002
EID výsledku v databázi Scopus
2-s2.0-85129678325