Nozzle Shape Optimization based on Machine Learning using Higher Order Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00362738" target="_blank" >RIV/68407700:21220/22:00362738 - isvavai.cz</a>
Výsledek na webu
<a href="https://efm.kez.tul.cz/" target="_blank" >https://efm.kez.tul.cz/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nozzle Shape Optimization based on Machine Learning using Higher Order Neural Networks
Popis výsledku v původním jazyce
In this contribution, a methodology of plane nozzle shape optimization based on machine learning is introduced. In contrast to standard deep neural network, the proposed neural network is built using higher order neural units. Polynomial structures together with various activation functions are employed as approximators of strongly nonlinear Navier-Stokes equations which govern the flow. Shape of well-known NASA nozzle is chosen as initial geometry which is approximated with 5-th order Bezier curve. Different geometrical shapes, derived from the initial geometry, are employed in order to obtain training data set. Thus, the task consists of multi-variable optimization with defined cost function as a targets which are calculated by means of computational fluid dynamics (CFD) performed on fully structured meshes. The goal of this optimization is obtain geometry which meets desired conditions at the outlet of the nozzle e.g., flow field uniformity, specified flow regime etc. Finally, performance of different approximators is compared and best candidates of optimization are validated through CFD calculation.
Název v anglickém jazyce
Nozzle Shape Optimization based on Machine Learning using Higher Order Neural Networks
Popis výsledku anglicky
In this contribution, a methodology of plane nozzle shape optimization based on machine learning is introduced. In contrast to standard deep neural network, the proposed neural network is built using higher order neural units. Polynomial structures together with various activation functions are employed as approximators of strongly nonlinear Navier-Stokes equations which govern the flow. Shape of well-known NASA nozzle is chosen as initial geometry which is approximated with 5-th order Bezier curve. Different geometrical shapes, derived from the initial geometry, are employed in order to obtain training data set. Thus, the task consists of multi-variable optimization with defined cost function as a targets which are calculated by means of computational fluid dynamics (CFD) performed on fully structured meshes. The goal of this optimization is obtain geometry which meets desired conditions at the outlet of the nozzle e.g., flow field uniformity, specified flow regime etc. Finally, performance of different approximators is compared and best candidates of optimization are validated through CFD calculation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference Experimental Fluid Mechanics 2022
ISBN
—
ISSN
2100-014X
e-ISSN
2100-014X
Počet stran výsledku
8
Strana od-do
138-145
Název nakladatele
EPJ Web of Conferences
Místo vydání
Les Ulis Cedex A
Místo konání akce
Dvůr Kralové
Datum konání akce
29. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—