Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Indicative Model Considering Part of the Thermo-Mechanical Behaviour of a Large Grinding Machine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00355655" target="_blank" >RIV/68407700:21220/23:00355655 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-34486-2_5" target="_blank" >https://doi.org/10.1007/978-3-031-34486-2_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-34486-2_5" target="_blank" >10.1007/978-3-031-34486-2_5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Indicative Model Considering Part of the Thermo-Mechanical Behaviour of a Large Grinding Machine

  • Popis výsledku v původním jazyce

    Machine tool (MT) thermal errors are an important element in ma-chined workpiece inaccuracies. In the past few decades, thermal errors associated mainly with one particular source (e.g. spindle or environment), have been successfully reduced by SW compensation techniques such as multiple linear re-gression analysis, finite element method, neural network, transfer function (TF) within similar calibration and verification conditions. An approach based on TFs is used for thermal error modelling in this research. This method respects basic heat transfer mechanisms in the MT and requires a minimum of additional gauges. The approach provides insight into the share of each source in the total machine thermal error through a combination of linear parametric models. The aim of this research is to develop an indicative model for a large grinding machine with predictive functionality focused on part of the thermo-mechanical behaviour within different configurations of the headstock, tailstock and workpiece. Unlike a compensation model, an indicative model has no connection to the MT feed drives and can only provide the machine operator with information regarding the actual direction and relative magnitude along with prediction of the time constant and steady state of the non-stationary thermal error. The second aim is to compare the difficulty of measuring at the stator and rotating machine part levels, the thermal behaviour linearity at both levels and the possibility of upgrading the indicative model to a compensation model to extend industrial applicability.

  • Název v anglickém jazyce

    An Indicative Model Considering Part of the Thermo-Mechanical Behaviour of a Large Grinding Machine

  • Popis výsledku anglicky

    Machine tool (MT) thermal errors are an important element in ma-chined workpiece inaccuracies. In the past few decades, thermal errors associated mainly with one particular source (e.g. spindle or environment), have been successfully reduced by SW compensation techniques such as multiple linear re-gression analysis, finite element method, neural network, transfer function (TF) within similar calibration and verification conditions. An approach based on TFs is used for thermal error modelling in this research. This method respects basic heat transfer mechanisms in the MT and requires a minimum of additional gauges. The approach provides insight into the share of each source in the total machine thermal error through a combination of linear parametric models. The aim of this research is to develop an indicative model for a large grinding machine with predictive functionality focused on part of the thermo-mechanical behaviour within different configurations of the headstock, tailstock and workpiece. Unlike a compensation model, an indicative model has no connection to the MT feed drives and can only provide the machine operator with information regarding the actual direction and relative magnitude along with prediction of the time constant and steady state of the non-stationary thermal error. The second aim is to compare the difficulty of measuring at the stator and rotating machine part levels, the thermal behaviour linearity at both levels and the possibility of upgrading the indicative model to a compensation model to extend industrial applicability.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FV30223" target="_blank" >FV30223: Těžká bruska TOS Hostivař</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    3rd International Conference on Thermal Issues in Machine Tools (ICTIMT2023)

  • ISBN

    978-3-031-34485-5

  • ISSN

    2194-0525

  • e-ISSN

    2194-0533

  • Počet stran výsledku

    13

  • Strana od-do

    54-66

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Drážďany

  • Datum konání akce

    21. 3. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku