Rotated-hybrid Riemann solver for all-speed flows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00363895" target="_blank" >RIV/68407700:21220/23:00363895 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2023.115129" target="_blank" >https://doi.org/10.1016/j.cam.2023.115129</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115129" target="_blank" >10.1016/j.cam.2023.115129</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rotated-hybrid Riemann solver for all-speed flows
Popis výsledku v původním jazyce
The contribution deals with numerical solution of compressible flows modeled by the Euler or the Navier–Stokes equations. Addressed flow regimes range from very low Mach number flows to hypersonic flows. The numerical solution is obtained by the finite volume method based on the rotated-hybrid Riemann solver method, where two different Riemann solvers are used in different directions. The combination of the HLL and the HLLC schemes leads to carbuncle-free numerical method. Both the HLL and the HLLC schemes are further modified for improved accuracy and stability in cases with very low Mach number flows. Second order accuracy in space is achieved by the piecewise linear WENO reconstruction while accuracy in time is maintained by the explicit two-stage TVD Runge–Kutta method. The proposed method is validated on many test cases including solution of subsonic flow over an airfoil with M=0.01 or hypersonic flow past circular cylinder with M=20.
Název v anglickém jazyce
Rotated-hybrid Riemann solver for all-speed flows
Popis výsledku anglicky
The contribution deals with numerical solution of compressible flows modeled by the Euler or the Navier–Stokes equations. Addressed flow regimes range from very low Mach number flows to hypersonic flows. The numerical solution is obtained by the finite volume method based on the rotated-hybrid Riemann solver method, where two different Riemann solvers are used in different directions. The combination of the HLL and the HLLC schemes leads to carbuncle-free numerical method. Both the HLL and the HLLC schemes are further modified for improved accuracy and stability in cases with very low Mach number flows. Second order accuracy in space is achieved by the piecewise linear WENO reconstruction while accuracy in time is maintained by the explicit two-stage TVD Runge–Kutta method. The proposed method is validated on many test cases including solution of subsonic flow over an airfoil with M=0.01 or hypersonic flow past circular cylinder with M=20.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
427
Číslo periodika v rámci svazku
1.8.2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000991654400001
EID výsledku v databázi Scopus
2-s2.0-85148546159