Case Study of Large Three-Dimensional-Printed Slider with Conformal Cooling for High-Pressure Die Casting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00365208" target="_blank" >RIV/68407700:21220/23:00365208 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1089/3dp.2022.0225" target="_blank" >https://doi.org/10.1089/3dp.2022.0225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1089/3dp.2022.0225" target="_blank" >10.1089/3dp.2022.0225</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Case Study of Large Three-Dimensional-Printed Slider with Conformal Cooling for High-Pressure Die Casting
Popis výsledku v původním jazyce
Metal three-dimensional (3D) printing technology brings several benefits to the field of high-pressure die casting of aluminum, which enhances its development. The associated conformal cooling application is already commonly used where there is a need to improve the quality of castings, increase tool life, or reduce the production cycle. However, will this technology withstand the production of a large part (~270 x 270 x 200 mm), which will be used directly in the serial production of engine blocks? This article describes a slider with a conformal cooling case study, which was redesigned and manufactured using the laser powder bed fusion (L-PBF) method. After the slider was put into serial production of 1.0 TSI three-cylinder engine blocks, this tool was thoroughly monitored based on the temperature field by comparing the results of a simulation in SW ProCAST with reality, and furthermore examining the influence of the tool on the quality of castings. There was also an evaluation of repairs performed on the tool in the ŠKODA AUTO tool shop and the foundry. These data were compared with a serial tool. Finally, the costs to produce the slider in conventional and 3D-printed variants are compared with an outline of other possible steps for optimizing these costs. The study results show that relatively large parts can be printed and used in serial production even today. It was also confirmed that conformal cooling influenced improving tool life, and the number of repairs in ŠKODA AUTO production also decreased.
Název v anglickém jazyce
Case Study of Large Three-Dimensional-Printed Slider with Conformal Cooling for High-Pressure Die Casting
Popis výsledku anglicky
Metal three-dimensional (3D) printing technology brings several benefits to the field of high-pressure die casting of aluminum, which enhances its development. The associated conformal cooling application is already commonly used where there is a need to improve the quality of castings, increase tool life, or reduce the production cycle. However, will this technology withstand the production of a large part (~270 x 270 x 200 mm), which will be used directly in the serial production of engine blocks? This article describes a slider with a conformal cooling case study, which was redesigned and manufactured using the laser powder bed fusion (L-PBF) method. After the slider was put into serial production of 1.0 TSI three-cylinder engine blocks, this tool was thoroughly monitored based on the temperature field by comparing the results of a simulation in SW ProCAST with reality, and furthermore examining the influence of the tool on the quality of castings. There was also an evaluation of repairs performed on the tool in the ŠKODA AUTO tool shop and the foundry. These data were compared with a serial tool. Finally, the costs to produce the slider in conventional and 3D-printed variants are compared with an outline of other possible steps for optimizing these costs. The study results show that relatively large parts can be printed and used in serial production even today. It was also confirmed that conformal cooling influenced improving tool life, and the number of repairs in ŠKODA AUTO production also decreased.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
3D Printing and Additive Manufacturing
ISSN
2329-7662
e-ISSN
2329-7670
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
587-608
Kód UT WoS článku
000953508500001
EID výsledku v databázi Scopus
2-s2.0-85169002624