Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00366808" target="_blank" >RIV/68407700:21220/23:00366808 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24132/acm.2023.827" target="_blank" >https://doi.org/10.24132/acm.2023.827</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24132/acm.2023.827" target="_blank" >10.24132/acm.2023.827</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh
Popis výsledku v původním jazyce
This work deals with estimations of errors, which are a consequence of a finite spatial discretisation that appears while solving differential equation numerically. More precisely, it deals with the estimation of errors that occur while computing compressible inviscid fluid flow over 2D airfoil cascades. This flow is described by the 2D Euler equations that are solved by the finite volume method in their conservative form. Numerical computations are performed on structured meshes consisting of four blocks, so the number of cells in the mesh can be easily adjusted. In this work, two estimation methods are used. Firstly, the grid convergence index is used to estimate the amount of cells needed to obtain certain accuracy of the solution. Secondly, the Richardson extrapolation is used to approximate the exact solution from a series of solutions obtained with meshes of different sizes. This analysis is performed on a well-known compressor cascade, which is composed of NACA 65 series airfoils. The obtained results should lead to a reasonable choice of the number of elements in a computational mesh based on the required accuracy of the solution and therefore also to computational time reduction while performing airfoil cascade computations. The results indicate that even for very precision demanding applications, 100 000 is a sufficient number of cells in a mesh.
Název v anglickém jazyce
Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh
Popis výsledku anglicky
This work deals with estimations of errors, which are a consequence of a finite spatial discretisation that appears while solving differential equation numerically. More precisely, it deals with the estimation of errors that occur while computing compressible inviscid fluid flow over 2D airfoil cascades. This flow is described by the 2D Euler equations that are solved by the finite volume method in their conservative form. Numerical computations are performed on structured meshes consisting of four blocks, so the number of cells in the mesh can be easily adjusted. In this work, two estimation methods are used. Firstly, the grid convergence index is used to estimate the amount of cells needed to obtain certain accuracy of the solution. Secondly, the Richardson extrapolation is used to approximate the exact solution from a series of solutions obtained with meshes of different sizes. This analysis is performed on a well-known compressor cascade, which is composed of NACA 65 series airfoils. The obtained results should lead to a reasonable choice of the number of elements in a computational mesh based on the required accuracy of the solution and therefore also to computational time reduction while performing airfoil cascade computations. The results indicate that even for very precision demanding applications, 100 000 is a sufficient number of cells in a mesh.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied and Computational Mechanics
ISSN
1802-680X
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
71-84
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85169845501