Estimation of Machine Tool Accuracy Based on Monte Carlo Simulation Using Movement Axes Geometric Errors Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00369418" target="_blank" >RIV/68407700:21220/23:00369418 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17973/MMSJ.2023_11_2023115" target="_blank" >https://doi.org/10.17973/MMSJ.2023_11_2023115</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2023_11_2023115" target="_blank" >10.17973/MMSJ.2023_11_2023115</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of Machine Tool Accuracy Based on Monte Carlo Simulation Using Movement Axes Geometric Errors Model
Popis výsledku v původním jazyce
Accuracy is one of the most important feature of a machine tool. Being able to estimate the overall accuracy of a machine tool represented by the total volumetric error can be a huge advantage in the design process. This paper provides overview of methods used for geometric error transfer modeling and volumetric error modeling. An error transfer rigid body model is derived and after that, a random linear guideway straightness error profile generator is proposed. This allows to simulate a movement axis with random straightness errors of rails and computed geometric errors of an assembled axis. Volumetric error of a 3-axis machine tool is then modeled using its kinematic scheme and homogenous transformation matrices with 21 kinematic errors. Using simulated axes as input to the volumetric model, an entire machine tool can be simulated. From that, the total volumetric error can be obtained and a Monte Carlo simulation carried out. This allows to analyze statistics of the total volumetric error and with slight input changes (rail straightness tolerance), a sensitivity analysis can be performed to determine the most influential errors in the machine tool.
Název v anglickém jazyce
Estimation of Machine Tool Accuracy Based on Monte Carlo Simulation Using Movement Axes Geometric Errors Model
Popis výsledku anglicky
Accuracy is one of the most important feature of a machine tool. Being able to estimate the overall accuracy of a machine tool represented by the total volumetric error can be a huge advantage in the design process. This paper provides overview of methods used for geometric error transfer modeling and volumetric error modeling. An error transfer rigid body model is derived and after that, a random linear guideway straightness error profile generator is proposed. This allows to simulate a movement axis with random straightness errors of rails and computed geometric errors of an assembled axis. Volumetric error of a 3-axis machine tool is then modeled using its kinematic scheme and homogenous transformation matrices with 21 kinematic errors. Using simulated axes as input to the volumetric model, an entire machine tool can be simulated. From that, the total volumetric error can be obtained and a Monte Carlo simulation carried out. This allows to analyze statistics of the total volumetric error and with slight input changes (rail straightness tolerance), a sensitivity analysis can be performed to determine the most influential errors in the machine tool.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2023
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
6945-6950
Kód UT WoS článku
001101121500001
EID výsledku v databázi Scopus
2-s2.0-85177057486