Computational fluid dynamics coupled to biokinetic models: Numerical methodology for microalgae cultivation optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00369713" target="_blank" >RIV/68407700:21220/24:00369713 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.psep.2023.11.038" target="_blank" >https://doi.org/10.1016/j.psep.2023.11.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.psep.2023.11.038" target="_blank" >10.1016/j.psep.2023.11.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational fluid dynamics coupled to biokinetic models: Numerical methodology for microalgae cultivation optimization
Popis výsledku v původním jazyce
Mixing of the algal culture medium in a photobioreactor (PBR) is a crucial factor to enhance microalgae culti- vation and production, since it ensures microalgae cells can homogeneously access nutrients and light radiation. Hydrodynamic conditions in an industrially applicable PBR cannot be tested in laboratory cultivation systems since the scale-up methodology is not specified; hence requiring complex tests at a demonstrative scale or the application of mathematical models. In this study, a three-dimensional numerical model of the hydrodynamic conditions in a hybrid horizontal tubular PBR was developed to investigate the mixing of the culture medium under various operating conditions, in order to optimize biomass production in this type of system. The PBR consists of two open tanks connected through sixteen polyethylene transparent tubes, at a demonstrative scale (total volume 11.7 m3). Microalgae cells movement inside the tubes was simulated. Cell trajectory prediction allows to simulate the intensity of mixing of the culture medium. Subsequent coupling with the biokinetic BIO_ALGAE model allows to monitor the influence of hydrodynamic conditions on the distribution of light in the culture medium and the yield of microalgae. The simulations were experimentally validated. The more intense mixing of the culture medium caused by increasing flow rate (Re = 23,700–46,200) allows more frequent exposure of the microalgae cells to the light source, which according to the results obtained can increase the microalgal yield by 14% in the summer cultivation period and by 151% in the winter period.
Název v anglickém jazyce
Computational fluid dynamics coupled to biokinetic models: Numerical methodology for microalgae cultivation optimization
Popis výsledku anglicky
Mixing of the algal culture medium in a photobioreactor (PBR) is a crucial factor to enhance microalgae culti- vation and production, since it ensures microalgae cells can homogeneously access nutrients and light radiation. Hydrodynamic conditions in an industrially applicable PBR cannot be tested in laboratory cultivation systems since the scale-up methodology is not specified; hence requiring complex tests at a demonstrative scale or the application of mathematical models. In this study, a three-dimensional numerical model of the hydrodynamic conditions in a hybrid horizontal tubular PBR was developed to investigate the mixing of the culture medium under various operating conditions, in order to optimize biomass production in this type of system. The PBR consists of two open tanks connected through sixteen polyethylene transparent tubes, at a demonstrative scale (total volume 11.7 m3). Microalgae cells movement inside the tubes was simulated. Cell trajectory prediction allows to simulate the intensity of mixing of the culture medium. Subsequent coupling with the biokinetic BIO_ALGAE model allows to monitor the influence of hydrodynamic conditions on the distribution of light in the culture medium and the yield of microalgae. The simulations were experimentally validated. The more intense mixing of the culture medium caused by increasing flow rate (Re = 23,700–46,200) allows more frequent exposure of the microalgae cells to the light source, which according to the results obtained can increase the microalgal yield by 14% in the summer cultivation period and by 151% in the winter period.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Process Safety and Environmental Protection
ISSN
0957-5820
e-ISSN
1744-3598
Svazek periodika
181
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
367-376
Kód UT WoS článku
001127522800001
EID výsledku v databázi Scopus
2-s2.0-85178137438