Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00370336" target="_blank" >RIV/68407700:21220/24:00370336 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11665-023-08002-4" target="_blank" >https://doi.org/10.1007/s11665-023-08002-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11665-023-08002-4" target="_blank" >10.1007/s11665-023-08002-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy
Popis výsledku v původním jazyce
The paper focuses on the investigation of the effect of heat input on the microstructure and mechanical properties of welded joints produced by electron beam welding of 4.0 mm-thick AW2099 aluminum-lithium alloy. This type of alloy is intended for application in an airplane fuselage. Information on electron beam welding of such type of materials is up to now is very limited. Non-dendritic equi-axed zone (EQZ) was observed at the heat-affected zone–weld metal interface. The higher heat input (HHI) led to the development of EQZ with a larger width. The thickness of EQZ was non-uniform across the base material thickness. EQZ was characterized by the presence of higher amounts of elements at the grain boundaries due to segregation. Eutectics based on α-aluminum + θ-Al2Cu were detected in those areas. Transmission electron microscopy detected the presence of AlLi and Al2Li3 intermetallic phases in the weld metal. Dissolution of the low-temperature δ'-Al3Li phase was observed by differential scanning calorimetry (DSC). Higher peak temperatures of a thermal cycle were measured during HHI welding. A peak temperature of 451 °C at a distance of 1.5 mm from the weld centerline was measured. The dissolution of precipitate particles caused by a thermal welding cycle resulted in the drop of microhardness in the fusion zone. Mean microhardness was slightly higher in the case of lower heat input (LHI) welding, i.e., 73% of that of the base material. The maximum weld tensile strength reached more than 83.8% of that of base materials. The fracture surface revealed the presence of dimples and bright brittle surfaces along with the microcracks and grain boundary eutectics.
Název v anglickém jazyce
Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy
Popis výsledku anglicky
The paper focuses on the investigation of the effect of heat input on the microstructure and mechanical properties of welded joints produced by electron beam welding of 4.0 mm-thick AW2099 aluminum-lithium alloy. This type of alloy is intended for application in an airplane fuselage. Information on electron beam welding of such type of materials is up to now is very limited. Non-dendritic equi-axed zone (EQZ) was observed at the heat-affected zone–weld metal interface. The higher heat input (HHI) led to the development of EQZ with a larger width. The thickness of EQZ was non-uniform across the base material thickness. EQZ was characterized by the presence of higher amounts of elements at the grain boundaries due to segregation. Eutectics based on α-aluminum + θ-Al2Cu were detected in those areas. Transmission electron microscopy detected the presence of AlLi and Al2Li3 intermetallic phases in the weld metal. Dissolution of the low-temperature δ'-Al3Li phase was observed by differential scanning calorimetry (DSC). Higher peak temperatures of a thermal cycle were measured during HHI welding. A peak temperature of 451 °C at a distance of 1.5 mm from the weld centerline was measured. The dissolution of precipitate particles caused by a thermal welding cycle resulted in the drop of microhardness in the fusion zone. Mean microhardness was slightly higher in the case of lower heat input (LHI) welding, i.e., 73% of that of the base material. The maximum weld tensile strength reached more than 83.8% of that of base materials. The fracture surface revealed the presence of dimples and bright brittle surfaces along with the microcracks and grain boundary eutectics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Engineering and Performance
ISSN
1059-9495
e-ISSN
1544-1024
Svazek periodika
33
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
776-796
Kód UT WoS článku
000943182300002
EID výsledku v databázi Scopus
2-s2.0-85149197082