Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00370336" target="_blank" >RIV/68407700:21220/24:00370336 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11665-023-08002-4" target="_blank" >https://doi.org/10.1007/s11665-023-08002-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11665-023-08002-4" target="_blank" >10.1007/s11665-023-08002-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy

  • Popis výsledku v původním jazyce

    The paper focuses on the investigation of the effect of heat input on the microstructure and mechanical properties of welded joints produced by electron beam welding of 4.0 mm-thick AW2099 aluminum-lithium alloy. This type of alloy is intended for application in an airplane fuselage. Information on electron beam welding of such type of materials is up to now is very limited. Non-dendritic equi-axed zone (EQZ) was observed at the heat-affected zone–weld metal interface. The higher heat input (HHI) led to the development of EQZ with a larger width. The thickness of EQZ was non-uniform across the base material thickness. EQZ was characterized by the presence of higher amounts of elements at the grain boundaries due to segregation. Eutectics based on α-aluminum + θ-Al2Cu were detected in those areas. Transmission electron microscopy detected the presence of AlLi and Al2Li3 intermetallic phases in the weld metal. Dissolution of the low-temperature δ'-Al3Li phase was observed by differential scanning calorimetry (DSC). Higher peak temperatures of a thermal cycle were measured during HHI welding. A peak temperature of 451 °C at a distance of 1.5 mm from the weld centerline was measured. The dissolution of precipitate particles caused by a thermal welding cycle resulted in the drop of microhardness in the fusion zone. Mean microhardness was slightly higher in the case of lower heat input (LHI) welding, i.e., 73% of that of the base material. The maximum weld tensile strength reached more than 83.8% of that of base materials. The fracture surface revealed the presence of dimples and bright brittle surfaces along with the microcracks and grain boundary eutectics.

  • Název v anglickém jazyce

    Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy

  • Popis výsledku anglicky

    The paper focuses on the investigation of the effect of heat input on the microstructure and mechanical properties of welded joints produced by electron beam welding of 4.0 mm-thick AW2099 aluminum-lithium alloy. This type of alloy is intended for application in an airplane fuselage. Information on electron beam welding of such type of materials is up to now is very limited. Non-dendritic equi-axed zone (EQZ) was observed at the heat-affected zone–weld metal interface. The higher heat input (HHI) led to the development of EQZ with a larger width. The thickness of EQZ was non-uniform across the base material thickness. EQZ was characterized by the presence of higher amounts of elements at the grain boundaries due to segregation. Eutectics based on α-aluminum + θ-Al2Cu were detected in those areas. Transmission electron microscopy detected the presence of AlLi and Al2Li3 intermetallic phases in the weld metal. Dissolution of the low-temperature δ'-Al3Li phase was observed by differential scanning calorimetry (DSC). Higher peak temperatures of a thermal cycle were measured during HHI welding. A peak temperature of 451 °C at a distance of 1.5 mm from the weld centerline was measured. The dissolution of precipitate particles caused by a thermal welding cycle resulted in the drop of microhardness in the fusion zone. Mean microhardness was slightly higher in the case of lower heat input (LHI) welding, i.e., 73% of that of the base material. The maximum weld tensile strength reached more than 83.8% of that of base materials. The fracture surface revealed the presence of dimples and bright brittle surfaces along with the microcracks and grain boundary eutectics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Engineering and Performance

  • ISSN

    1059-9495

  • e-ISSN

    1544-1024

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    776-796

  • Kód UT WoS článku

    000943182300002

  • EID výsledku v databázi Scopus

    2-s2.0-85149197082