Online elasticity estimation and material sorting using standard robot grippers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00374998" target="_blank" >RIV/68407700:21220/24:00374998 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00374998
Výsledek na webu
<a href="https://doi.org/10.1007/s00170-024-13678-6" target="_blank" >https://doi.org/10.1007/s00170-024-13678-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00170-024-13678-6" target="_blank" >10.1007/s00170-024-13678-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online elasticity estimation and material sorting using standard robot grippers
Popis výsledku v původním jazyce
Stiffness or elasticity estimation of everyday objects using robot grippers is highly desired for object recognition or classification in application areas like food handling and single-stream object sorting. However, standard robot grippers are not designed for material recognition. We experimentally evaluated the accuracy with which material properties can be estimated through object compression by two standard parallel jaw grippers and a force/torque sensor mounted at the robot wrist, with a professional biaxial compression device used as reference. Gripper effort versus position curves were obtained and transformed into stress/strain curves. The modulus of elasticity was estimated at different strain points and the effect of multiple compression cycles (precycling), compression speed, and the gripper surface area on estimation was studied. Viscoelasticity was estimated using the energy absorbed in a compression/decompression cycle, the Kelvin-Voigt, and Hunt-Crossley models. We found that (1) slower compression speeds improved elasticity estimation, while precycling or surface area did not; (2) the robot grippers, even after calibration, were found to have a limited capability of delivering accurate estimates of absolute values of Young’s modulus and viscoelasticity; (3) relative ordering of material characteristics was largely consistent across different grippers; (4) despite the nonlinear characteristics of deformable objects, fitting linear stress/strain approximations led to more stable results than local estimates of Young’s modulus; and (5) the Hunt-Crossley model worked best to estimate viscoelasticity, from a single object compression. A two-dimensional space formed by elasticity and viscoelasticity estimates obtained from a single grasp is advantageous for the discrimination of the object material properties. We demonstrated the applicability of our findings in a mock single-stream recycling scenario, where plastic, paper, and metal objects were correctly separated from a single grasp, even when compressed at different locations on the object. The data and code are publicly available.
Název v anglickém jazyce
Online elasticity estimation and material sorting using standard robot grippers
Popis výsledku anglicky
Stiffness or elasticity estimation of everyday objects using robot grippers is highly desired for object recognition or classification in application areas like food handling and single-stream object sorting. However, standard robot grippers are not designed for material recognition. We experimentally evaluated the accuracy with which material properties can be estimated through object compression by two standard parallel jaw grippers and a force/torque sensor mounted at the robot wrist, with a professional biaxial compression device used as reference. Gripper effort versus position curves were obtained and transformed into stress/strain curves. The modulus of elasticity was estimated at different strain points and the effect of multiple compression cycles (precycling), compression speed, and the gripper surface area on estimation was studied. Viscoelasticity was estimated using the energy absorbed in a compression/decompression cycle, the Kelvin-Voigt, and Hunt-Crossley models. We found that (1) slower compression speeds improved elasticity estimation, while precycling or surface area did not; (2) the robot grippers, even after calibration, were found to have a limited capability of delivering accurate estimates of absolute values of Young’s modulus and viscoelasticity; (3) relative ordering of material characteristics was largely consistent across different grippers; (4) despite the nonlinear characteristics of deformable objects, fitting linear stress/strain approximations led to more stable results than local estimates of Young’s modulus; and (5) the Hunt-Crossley model worked best to estimate viscoelasticity, from a single object compression. A two-dimensional space formed by elasticity and viscoelasticity estimates obtained from a single grasp is advantageous for the discrimination of the object material properties. We demonstrated the applicability of our findings in a mock single-stream recycling scenario, where plastic, paper, and metal objects were correctly separated from a single grasp, even when compressed at different locations on the object. The data and code are publicly available.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The International Journal of Advanced Manufacturing Technology
ISSN
0268-3768
e-ISSN
1433-3015
Svazek periodika
132
Číslo periodika v rámci svazku
11-12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
6033-6051
Kód UT WoS článku
001216673400007
EID výsledku v databázi Scopus
2-s2.0-85190864783