Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00376389" target="_blank" >RIV/68407700:21220/24:00376389 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.heliyon.2024.e35194" target="_blank" >https://doi.org/10.1016/j.heliyon.2024.e35194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e35194" target="_blank" >10.1016/j.heliyon.2024.e35194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach
Popis výsledku v původním jazyce
This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current. L27 orthogonal array is considered to understand the influence of control parameter such as Kerf Width (KW), Roughness of the surface (Ra), Material Removal Rate (MRR). Integration of the CRITIC (Criteria Importance Through Intercriteria Correlation) -WASPAS (Weighted Aggregated Sum Product Assessment) multi-objective optimization method with Artificial Neural Network (ANN) modelling with different network structure for prediction and optimization is a novel approach that significantly improves prediction accuracy and machining outcomes. The developed ANN model with better R2 value of 99.9 % has better ability for prediction while correlated with formulated conventional regression equation. The error percentages identified through confirmation tests for regression and ANN models are Ra - 8.5 % and 3.4 %, MRR - 5.9 % and 2.8 %, KW - 6.7 % and 2.2 % respectively. Optimal output response attained by CRITICWASPAS approach yields surface roughness of 4.62 mu m, material removal rate of 0.073 g/min and kerf width of 0.388 mu m.
Název v anglickém jazyce
Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach
Popis výsledku anglicky
This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current. L27 orthogonal array is considered to understand the influence of control parameter such as Kerf Width (KW), Roughness of the surface (Ra), Material Removal Rate (MRR). Integration of the CRITIC (Criteria Importance Through Intercriteria Correlation) -WASPAS (Weighted Aggregated Sum Product Assessment) multi-objective optimization method with Artificial Neural Network (ANN) modelling with different network structure for prediction and optimization is a novel approach that significantly improves prediction accuracy and machining outcomes. The developed ANN model with better R2 value of 99.9 % has better ability for prediction while correlated with formulated conventional regression equation. The error percentages identified through confirmation tests for regression and ANN models are Ra - 8.5 % and 3.4 %, MRR - 5.9 % and 2.8 %, KW - 6.7 % and 2.2 % respectively. Optimal output response attained by CRITICWASPAS approach yields surface roughness of 4.62 mu m, material removal rate of 0.073 g/min and kerf width of 0.388 mu m.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
001285965600001
EID výsledku v databázi Scopus
2-s2.0-85199925406