Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00376389" target="_blank" >RIV/68407700:21220/24:00376389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.heliyon.2024.e35194" target="_blank" >https://doi.org/10.1016/j.heliyon.2024.e35194</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e35194" target="_blank" >10.1016/j.heliyon.2024.e35194</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach

  • Popis výsledku v původním jazyce

    This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current. L27 orthogonal array is considered to understand the influence of control parameter such as Kerf Width (KW), Roughness of the surface (Ra), Material Removal Rate (MRR). Integration of the CRITIC (Criteria Importance Through Intercriteria Correlation) -WASPAS (Weighted Aggregated Sum Product Assessment) multi-objective optimization method with Artificial Neural Network (ANN) modelling with different network structure for prediction and optimization is a novel approach that significantly improves prediction accuracy and machining outcomes. The developed ANN model with better R2 value of 99.9 % has better ability for prediction while correlated with formulated conventional regression equation. The error percentages identified through confirmation tests for regression and ANN models are Ra - 8.5 % and 3.4 %, MRR - 5.9 % and 2.8 %, KW - 6.7 % and 2.2 % respectively. Optimal output response attained by CRITICWASPAS approach yields surface roughness of 4.62 mu m, material removal rate of 0.073 g/min and kerf width of 0.388 mu m.

  • Název v anglickém jazyce

    Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach

  • Popis výsledku anglicky

    This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current. L27 orthogonal array is considered to understand the influence of control parameter such as Kerf Width (KW), Roughness of the surface (Ra), Material Removal Rate (MRR). Integration of the CRITIC (Criteria Importance Through Intercriteria Correlation) -WASPAS (Weighted Aggregated Sum Product Assessment) multi-objective optimization method with Artificial Neural Network (ANN) modelling with different network structure for prediction and optimization is a novel approach that significantly improves prediction accuracy and machining outcomes. The developed ANN model with better R2 value of 99.9 % has better ability for prediction while correlated with formulated conventional regression equation. The error percentages identified through confirmation tests for regression and ANN models are Ra - 8.5 % and 3.4 %, MRR - 5.9 % and 2.8 %, KW - 6.7 % and 2.2 % respectively. Optimal output response attained by CRITICWASPAS approach yields surface roughness of 4.62 mu m, material removal rate of 0.073 g/min and kerf width of 0.388 mu m.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

    2405-8440

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    001285965600001

  • EID výsledku v databázi Scopus

    2-s2.0-85199925406