Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00378752" target="_blank" >RIV/68407700:21220/24:00378752 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/24:00378752

  • Výsledek na webu

    <a href="https://doi.org/10.1109/INDIN58382.2024.10774436" target="_blank" >https://doi.org/10.1109/INDIN58382.2024.10774436</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/INDIN58382.2024.10774436" target="_blank" >10.1109/INDIN58382.2024.10774436</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network

  • Popis výsledku v původním jazyce

    In a circular economy, products in their end-of-life phase should be either remanufactured or recycled. Both of these processes are crucial for sustainability and environmental conservation. However, manufacturers frequently do not support these processes enough in terms of not sharing relevant data about the products nor their (re-)manufacturing processes. This paper proposes to accompany each product with a digital twin technology, specifically the Product Digital Twin (PDT), which can carry information for facilitating and optimizing production and remanufacturing processes. This paper introduces a knowledge representation called Bi-Flow Product-Process-Resource Asset Network (Bi-PAN). Bi-PAN extends a well-proven Product-Process-Resource Asset Network (PAN) paradigm by integrating both assembly and disassembly workflows into a single information model. Such networks enable capturing relevant relationships across products, production resources, manufacturing processes, and specific production operations that have to be done in the manufacturing phase of a product. The proposed approach is demonstrated in a use-case of disassembling electric vehicle (EV) batteries. By utilizing PDTs with Bi-PAN knowledge models, challenges associated with disassembling of EV batteries can be solved flexibly and efficiently for various battery types, enhancing the sustainability of the EV battery life-cycle management.

  • Název v anglickém jazyce

    Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network

  • Popis výsledku anglicky

    In a circular economy, products in their end-of-life phase should be either remanufactured or recycled. Both of these processes are crucial for sustainability and environmental conservation. However, manufacturers frequently do not support these processes enough in terms of not sharing relevant data about the products nor their (re-)manufacturing processes. This paper proposes to accompany each product with a digital twin technology, specifically the Product Digital Twin (PDT), which can carry information for facilitating and optimizing production and remanufacturing processes. This paper introduces a knowledge representation called Bi-Flow Product-Process-Resource Asset Network (Bi-PAN). Bi-PAN extends a well-proven Product-Process-Resource Asset Network (PAN) paradigm by integrating both assembly and disassembly workflows into a single information model. Such networks enable capturing relevant relationships across products, production resources, manufacturing processes, and specific production operations that have to be done in the manufacturing phase of a product. The proposed approach is demonstrated in a use-case of disassembling electric vehicle (EV) batteries. By utilizing PDTs with Bi-PAN knowledge models, challenges associated with disassembling of EV batteries can be solved flexibly and efficiently for various battery types, enhancing the sustainability of the EV battery life-cycle management.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE 22nd International Conference on Industrial Informatics (INDIN)

  • ISBN

    979-8-3315-2747-1

  • ISSN

    1935-4576

  • e-ISSN

    2378-363X

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE Industrial Electronic Society

  • Místo vydání

    Vienna

  • Místo konání akce

    Peking

  • Datum konání akce

    17. 8. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku