Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Multinomial Mixture Model to Text Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F03%3A03087707" target="_blank" >RIV/68407700:21230/03:03087707 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/03:16030062

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Multinomial Mixture Model to Text Classification

  • Popis výsledku v původním jazyce

    The goal of text document classification is to assign a new document into one class from the predefined classes based on its contents. In this paper, a mixture of multinomial distributions is proposed as a model for class-conditional distributions in document classification task. A bag-of-words approach to vector document representation is employed. It is shown, that the accuracy of the Bayes document classifier can be improved by the proposed model in comparison with the Bayes classifiers based on themultivariate Bernoulli model, the multinomial model as well as the multivariate Bernoulli mixture model. Experimental results on the Reuters and the Newsgroups data sets indicate the effectiveness of the multinomial mixture model. Furthermore, an increase in classification accuracy is achieved for small training data sets, when multiclass Bhattacharyya distance is used instead of average mutual information as a

  • Název v anglickém jazyce

    Application of Multinomial Mixture Model to Text Classification

  • Popis výsledku anglicky

    The goal of text document classification is to assign a new document into one class from the predefined classes based on its contents. In this paper, a mixture of multinomial distributions is proposed as a model for class-conditional distributions in document classification task. A bag-of-words approach to vector document representation is employed. It is shown, that the accuracy of the Bayes document classifier can be improved by the proposed model in comparison with the Bayes classifiers based on themultivariate Bernoulli model, the multinomial model as well as the multivariate Bernoulli mixture model. Experimental results on the Reuters and the Newsgroups data sets indicate the effectiveness of the multinomial mixture model. Furthermore, an increase in classification accuracy is achieved for small training data sets, when multiclass Bhattacharyya distance is used instead of average mutual information as a

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Pattern Recognition and Image Analysis

  • ISBN

    3-540-40217-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    646-653

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Puerto de Andtratx, Mallorca

  • Datum konání akce

    4. 6. 2003

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku