Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03106374" target="_blank" >RIV/68407700:21230/04:03106374 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
Popis výsledku v původním jazyce
Finding disease markers (classifiers) from gene expression data by machine learning algorithms is characterized by an especially high risk of overfitting the data due the abundance of attributes (simultaneously measured gene expression values) and shortage of available examples (observations). To avoid this pitfall and achieve predictor robustness, state-of-art approaches construct complex classifiers that combine relatively weak contributions of up to thousands of genes (attributes) to classify a disease. The complexity of such classifiers limits their transparency and consequently the biological insight they can provide. The goal of this study is to apply to this domain the methodology of constructing simple yet robust logic-based classifiers amenable to direct expert interpretation. On two well-known, publicly available gene expression classification problems, we show the feasibility of this approach, employing a recently developed subgroup discovery methodology.
Název v anglickém jazyce
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
Popis výsledku anglicky
Finding disease markers (classifiers) from gene expression data by machine learning algorithms is characterized by an especially high risk of overfitting the data due the abundance of attributes (simultaneously measured gene expression values) and shortage of available examples (observations). To avoid this pitfall and achieve predictor robustness, state-of-art approaches construct complex classifiers that combine relatively weak contributions of up to thousands of genes (attributes) to classify a disease. The complexity of such classifiers limits their transparency and consequently the biological insight they can provide. The goal of this study is to apply to this domain the methodology of constructing simple yet robust logic-based classifiers amenable to direct expert interpretation. On two well-known, publicly available gene expression classification problems, we show the feasibility of this approach, employing a recently developed subgroup discovery methodology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2nd EUNITE Workshop on Intelligent Technologies for GeneExpression Based Individualized Medicine
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
269-284
Název nakladatele
BioControl Jena GmbH
Místo vydání
Jena
Místo konání akce
Jena
Datum konání akce
14. 5. 2004
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—