Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03119764" target="_blank" >RIV/68407700:21230/06:03119764 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stability Margin of Schur Polynomials

  • Popis výsledku v původním jazyce

    The paper deals with the problem of determining robust Schur stability of a ball of polynomials specified by a weighted lp norm in the coefficient space where different values of the weights are taken for coefficients being above and below their nominalvalues. Such a ball is called a nonsymmetric ball of polynomials. This consideration reflects more realistic situations than considering the same values. The problem is solved using the value set concept and zero exclusion principle. The solution corresponds to generalization of Tsypkin-Polyak locus for discrete-time polynomials and needs four plots instead of one. The sufficient condition of stability that is graphical in nature is given.

  • Název v anglickém jazyce

    Stability Margin of Schur Polynomials

  • Popis výsledku anglicky

    The paper deals with the problem of determining robust Schur stability of a ball of polynomials specified by a weighted lp norm in the coefficient space where different values of the weights are taken for coefficients being above and below their nominalvalues. Such a ball is called a nonsymmetric ball of polynomials. This consideration reflects more realistic situations than considering the same values. The problem is solved using the value set concept and zero exclusion principle. The solution corresponds to generalization of Tsypkin-Polyak locus for discrete-time polynomials and needs four plots instead of one. The sufficient condition of stability that is graphical in nature is given.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1P04LA231" target="_blank" >1P04LA231: IFAC - práce v Technickém výboru Cognition and Control při Mezinárodní federaci automatizovaného řízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

    Pardubice

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče

    neuvedeno