Skupinové učení s logickými reprezentacemi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03142518" target="_blank" >RIV/68407700:21230/08:03142518 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collaborative Learning with Logic-Based Models
Popis výsledku v původním jazyce
Adaptability is a fundamental property of any intelligent system. In this paper, we present how adaptability in multi-agent systems can be implemented by means of collaborative logic-based learning. The proposed method is based on two building blocks: (1) a set of operations centred around inductive logic programming for generalizing agents' observations into sets of rules, and (2) a set of communication strategies for sharing acquired knowledge among agents in order to improve the collaborative learning process. Using these modular building blocks, several learning algorithms can be constructed with different trade-offs between the quality of learning, computation and communication requirements, and the disclosure of the agent's private information. The method has been implemented as a modular software component that can be integrated into the control loop of an intelligent agent.
Název v anglickém jazyce
Collaborative Learning with Logic-Based Models
Popis výsledku anglicky
Adaptability is a fundamental property of any intelligent system. In this paper, we present how adaptability in multi-agent systems can be implemented by means of collaborative logic-based learning. The proposed method is based on two building blocks: (1) a set of operations centred around inductive logic programming for generalizing agents' observations into sets of rules, and (2) a set of communication strategies for sharing acquired knowledge among agents in order to improve the collaborative learning process. Using these modular building blocks, several learning algorithms can be constructed with different trade-offs between the quality of learning, computation and communication requirements, and the disclosure of the agent's private information. The method has been implemented as a modular software component that can be integrated into the control loop of an intelligent agent.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning
ISBN
978-3-540-77947-6
Počet stran výsledku
15
Strana od-do
—
Počet stran knihy
255
Název nakladatele
Springer
Místo vydání
Heidelberg
Kód UT WoS kapitoly
—