Feature Ranking Derived from Data Mining Process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145492" target="_blank" >RIV/68407700:21230/08:03145492 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature Ranking Derived from Data Mining Process
Popis výsledku v původním jazyce
Most common feature ranking methods are based on the statistical approach. This paper compare several statistical methods with new method for feature ranking derived from data mining process. This method ranks features depending on percentage of child units that survived the selection process. A child unit is a processing element transforming the parent input features to the output. After training, units are interconnected in the feedforward hybrid neural network called GAME. The selection process is realized by means of niching genetic algorithm, where units connected to least significant features starve and fade from population. Parameters of new FR algorithm are investigated and comparison among different methods is presented on well known real world and artificial data sets.
Název v anglickém jazyce
Feature Ranking Derived from Data Mining Process
Popis výsledku anglicky
Most common feature ranking methods are based on the statistical approach. This paper compare several statistical methods with new method for feature ranking derived from data mining process. This method ranks features depending on percentage of child units that survived the selection process. A child unit is a processing element transforming the parent input features to the output. After training, units are interconnected in the feedforward hybrid neural network called GAME. The selection process is realized by means of niching genetic algorithm, where units connected to least significant features starve and fade from population. Parameters of new FR algorithm are investigated and comparison among different methods is presented on well known real world and artificial data sets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks - ICANN 2008
ISBN
978-3-540-87558-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Prague
Datum konání akce
3. 9. 2008
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000259567200092