Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Feature Ranking Derived from Data Mining Process

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145492" target="_blank" >RIV/68407700:21230/08:03145492 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Feature Ranking Derived from Data Mining Process

  • Popis výsledku v původním jazyce

    Most common feature ranking methods are based on the statistical approach. This paper compare several statistical methods with new method for feature ranking derived from data mining process. This method ranks features depending on percentage of child units that survived the selection process. A child unit is a processing element transforming the parent input features to the output. After training, units are interconnected in the feedforward hybrid neural network called GAME. The selection process is realized by means of niching genetic algorithm, where units connected to least significant features starve and fade from population. Parameters of new FR algorithm are investigated and comparison among different methods is presented on well known real world and artificial data sets.

  • Název v anglickém jazyce

    Feature Ranking Derived from Data Mining Process

  • Popis výsledku anglicky

    Most common feature ranking methods are based on the statistical approach. This paper compare several statistical methods with new method for feature ranking derived from data mining process. This method ranks features depending on percentage of child units that survived the selection process. A child unit is a processing element transforming the parent input features to the output. After training, units are interconnected in the feedforward hybrid neural network called GAME. The selection process is realized by means of niching genetic algorithm, where units connected to least significant features starve and fade from population. Parameters of new FR algorithm are investigated and comparison among different methods is presented on well known real world and artificial data sets.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008

  • ISBN

    978-3-540-87558-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000259567200092