Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analýza lidského mozku pomocí NMR spektra a neuronových sítích

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145662" target="_blank" >RIV/68407700:21230/08:03145662 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00023001:_____/08:00001909

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of Human Brain NMR Spectra in Vivo Using Artificial Neural Networks

  • Popis výsledku v původním jazyce

    Magnetic resonance has proven to be a successful method of in-vivo imaging. Although MRI can help detect various pathologies, its ability to classify the nature of the pathological tissue is limited. Magnetic resonance spectroscopy allows identifying metabolite content of the tissue and estimating the metabolite concentration. Map of metabolite concentration along with the MR image allows proper classification of many pathologies, for example progressive tumorous tissue identification in brain. Standardmethods used to analyze nuclear magnetic resonance spectra such as singular value decomposition or curve fitting algorithms are very time consuming taking several minutes to analyze spectrum from a single voxel. To analyze the spectra from a chemical shift imagine sequence (CSI) in maximal resolution hundreds of spectra need to be processed. The suggested ANN framework proved to be much faster. Networks were trained on the outputs of LCModel curve fitting algorithm.

  • Název v anglickém jazyce

    Analysis of Human Brain NMR Spectra in Vivo Using Artificial Neural Networks

  • Popis výsledku anglicky

    Magnetic resonance has proven to be a successful method of in-vivo imaging. Although MRI can help detect various pathologies, its ability to classify the nature of the pathological tissue is limited. Magnetic resonance spectroscopy allows identifying metabolite content of the tissue and estimating the metabolite concentration. Map of metabolite concentration along with the MR image allows proper classification of many pathologies, for example progressive tumorous tissue identification in brain. Standardmethods used to analyze nuclear magnetic resonance spectra such as singular value decomposition or curve fitting algorithms are very time consuming taking several minutes to analyze spectrum from a single voxel. To analyze the spectra from a chemical shift imagine sequence (CSI) in maximal resolution hundreds of spectra need to be processed. The suggested ANN framework proved to be much faster. Networks were trained on the outputs of LCModel curve fitting algorithm.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008

  • ISBN

    978-3-540-87558-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000259567200054