Three-dimensional segmentation of bones from CT and MRI using fast level sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03149967" target="_blank" >RIV/68407700:21230/08:03149967 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Three-dimensional segmentation of bones from CT and MRI using fast level sets
Popis výsledku v původním jazyce
Our task is to segment bones from 3D CT and MRI images. The main application is creation of 3D mesh models for finite element modeling. These surface and volume vector models can be used for further biomechanical processing and analysis. We selected a novel fast level set method because of its high computational efficiency, while preserving all advantages of traditional level set methods. Unlike in traditional level set methods, we are not solving partial differential equations (PDEs). Instead, the contours are represeted by two sets of points, corresponding to the inner and outer edge of the object boundary. We have extended the original implementation in 3D, where the speed advantage over classical level set segmentation are even more pronounced. Wecan segment a CT image of 512x512x125 in less than 20s by this method. It is approximately two orders of magnitude faster than standard narrow band algorithms. Our experiments with real 3D CT and MRI images presented in this paper showed
Název v anglickém jazyce
Three-dimensional segmentation of bones from CT and MRI using fast level sets
Popis výsledku anglicky
Our task is to segment bones from 3D CT and MRI images. The main application is creation of 3D mesh models for finite element modeling. These surface and volume vector models can be used for further biomechanical processing and analysis. We selected a novel fast level set method because of its high computational efficiency, while preserving all advantages of traditional level set methods. Unlike in traditional level set methods, we are not solving partial differential equations (PDEs). Instead, the contours are represeted by two sets of points, corresponding to the inner and outer edge of the object boundary. We have extended the original implementation in 3D, where the speed advantage over classical level set segmentation are even more pronounced. Wecan segment a CT image of 512x512x125 in less than 20s by this method. It is approximately two orders of magnitude faster than standard narrow band algorithms. Our experiments with real 3D CT and MRI images presented in this paper showed
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SPIE MI 2008: Proceedings of the SPIE Medical Imaging 2008 Conference
ISBN
978-0-8194-7098-0
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Washington
Místo konání akce
San Diego
Datum konání akce
16. 2. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000256058600144