Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157411" target="_blank" >RIV/68407700:21230/09:00157411 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems

  • Popis výsledku v původním jazyce

    Automated speech recognition (ASR) systems work typically with pronunciation dictionary for generating expected phonetic content of particular words in recognized utterance. But the pronunciation can vary in many situations. Besides the cases with more possible pronunciation variants specified manually in the dictionary there are typically many other possible changes in the pronunciation depending on word context or speaking style, very typical for our case of Czech language. In this paper we have studied the accuracy of proper selection of automatically predicted pronunciation variants in Czech HMM ASR based systems. We have analyzed correctness of pronunciation variant selection in forced alignment of known utterances. Using the proper pronunciationvariant were created mainly for the more accurate training of acoustic HMM models. Finally, the accuracy of LVCSR results using different levels of automated pronunciation generation were tested.

  • Název v anglickém jazyce

    Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems

  • Popis výsledku anglicky

    Automated speech recognition (ASR) systems work typically with pronunciation dictionary for generating expected phonetic content of particular words in recognized utterance. But the pronunciation can vary in many situations. Besides the cases with more possible pronunciation variants specified manually in the dictionary there are typically many other possible changes in the pronunciation depending on word context or speaking style, very typical for our case of Czech language. In this paper we have studied the accuracy of proper selection of automatically predicted pronunciation variants in Czech HMM ASR based systems. We have analyzed correctness of pronunciation variant selection in forced alignment of known utterances. Using the proper pronunciationvariant were created mainly for the more accurate training of acoustic HMM models. Finally, the accuracy of LVCSR results using different levels of automated pronunciation generation were tested.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F08%2F0707" target="_blank" >GA102/08/0707: Rozpoznávání mluvené řeči v reálných podmínkách</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Artificial Intelligence

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    5641

  • Číslo periodika v rámci svazku

    2009931057

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus