Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157411" target="_blank" >RIV/68407700:21230/09:00157411 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems
Popis výsledku v původním jazyce
Automated speech recognition (ASR) systems work typically with pronunciation dictionary for generating expected phonetic content of particular words in recognized utterance. But the pronunciation can vary in many situations. Besides the cases with more possible pronunciation variants specified manually in the dictionary there are typically many other possible changes in the pronunciation depending on word context or speaking style, very typical for our case of Czech language. In this paper we have studied the accuracy of proper selection of automatically predicted pronunciation variants in Czech HMM ASR based systems. We have analyzed correctness of pronunciation variant selection in forced alignment of known utterances. Using the proper pronunciationvariant were created mainly for the more accurate training of acoustic HMM models. Finally, the accuracy of LVCSR results using different levels of automated pronunciation generation were tested.
Název v anglickém jazyce
Accuracy Analysis of Generalized Pronunciation Variant Selection in ASR Systems
Popis výsledku anglicky
Automated speech recognition (ASR) systems work typically with pronunciation dictionary for generating expected phonetic content of particular words in recognized utterance. But the pronunciation can vary in many situations. Besides the cases with more possible pronunciation variants specified manually in the dictionary there are typically many other possible changes in the pronunciation depending on word context or speaking style, very typical for our case of Czech language. In this paper we have studied the accuracy of proper selection of automatically predicted pronunciation variants in Czech HMM ASR based systems. We have analyzed correctness of pronunciation variant selection in forced alignment of known utterances. Using the proper pronunciationvariant were created mainly for the more accurate training of acoustic HMM models. Finally, the accuracy of LVCSR results using different levels of automated pronunciation generation were tested.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F08%2F0707" target="_blank" >GA102/08/0707: Rozpoznávání mluvené řeči v reálných podmínkách</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Svazek periodika
5641
Číslo periodika v rámci svazku
2009931057
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—