Multi-Condition Training for Unknown Environment Adaptation in Robust ASR Under Real Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157917" target="_blank" >RIV/68407700:21230/09:00157917 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Condition Training for Unknown Environment Adaptation in Robust ASR Under Real Conditions
Popis výsledku v původním jazyce
Automatic speech recognition (ASR) systems frequently work in noisy environment. As they are often trained on clean speech data, noise reduction or adaptation techniques are applied to decrease the influence of background disturbance. This paper analysesthe recognition performance within such adaptation when multi-condition training data from real environment are used for training initial models. Although the quality of such models can decrease with the presence of noise in the training material, theyare supposed to include initial information about noise and consequently support the adaptation procedure. Experimental results show significant improvement of the proposed training method in robust ASR task under unknown noisy conditions. The decrease by 29% and 14% in word error rate against the case with clean speech training data was reached for the non-adapted and adapted system respectively.
Název v anglickém jazyce
Multi-Condition Training for Unknown Environment Adaptation in Robust ASR Under Real Conditions
Popis výsledku anglicky
Automatic speech recognition (ASR) systems frequently work in noisy environment. As they are often trained on clean speech data, noise reduction or adaptation techniques are applied to decrease the influence of background disturbance. This paper analysesthe recognition performance within such adaptation when multi-condition training data from real environment are used for training initial models. Although the quality of such models can decrease with the presence of noise in the training material, theyare supposed to include initial information about noise and consequently support the adaptation procedure. Experimental results show significant improvement of the proposed training method in robust ASR task under unknown noisy conditions. The decrease by 29% and 14% in word error rate against the case with clean speech training data was reached for the non-adapted and adapted system respectively.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
2-3/2009
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
5
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—