An improved Toeplitz algorithm for polynomial matrix null-space computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158290" target="_blank" >RIV/68407700:21230/09:00158290 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An improved Toeplitz algorithm for polynomial matrix null-space computation
Popis výsledku v původním jazyce
In this paper, we present an improved algorithm to compute the minimal null-space basis of polynomial matrices, a problem which has many applications in control and systems theory. This algorithm takes advantage of the block Toeplitz structure of the Sylvester matrix associated with the polynomial matrix. The analysis of algorithmic complexity and numerical stability shows that the algorithm is reliable and can be considered as an efficient alternative to the well-known pencil (state-space) algorithms found in the literature.
Název v anglickém jazyce
An improved Toeplitz algorithm for polynomial matrix null-space computation
Popis výsledku anglicky
In this paper, we present an improved algorithm to compute the minimal null-space basis of polynomial matrices, a problem which has many applications in control and systems theory. This algorithm takes advantage of the block Toeplitz structure of the Sylvester matrix associated with the polynomial matrix. The analysis of algorithmic complexity and numerical stability shows that the algorithm is reliable and can be considered as an efficient alternative to the well-known pencil (state-space) algorithms found in the literature.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F06%2F0652" target="_blank" >GA102/06/0652: Software pro numerické řešení optimalizačních problémů s omezeními ve tvaru polynomiálních maticových nerovností</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Svazek periodika
207
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000262613200026
EID výsledku v databázi Scopus
—