P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00175503" target="_blank" >RIV/68407700:21230/10:00175503 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints
Popis výsledku v původním jazyce
This paper shows that the performance of a binary clas- sifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if know- ing the label of one example restricts the labeling of the others. We propose anovel paradigm for training a binary classifier from labeled and unlabeled examples that we call P-N learning. The learning process is guided by positive (P) and negative (N) constraints which restrict the label- ing of the unlabeled set. P-N learning evaluates the clas- sifier on the unlabeled data, identifies examples that have been classified in contradiction with structural constraints and augments the training set with the corrected samples in an iterative process. We propose a theory that formu-lates the conditions under which P-N learning guarantees improvement of the initial classifier and validate it on syn- thetic and real data. P-N learning is applied to the problem of on-line learning of object detector during tracking. We
Název v anglickém jazyce
P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints
Popis výsledku anglicky
This paper shows that the performance of a binary clas- sifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if know- ing the label of one example restricts the labeling of the others. We propose anovel paradigm for training a binary classifier from labeled and unlabeled examples that we call P-N learning. The learning process is guided by positive (P) and negative (N) constraints which restrict the label- ing of the unlabeled set. P-N learning evaluates the clas- sifier on the unlabeled data, identifies examples that have been classified in contradiction with structural constraints and augments the training set with the corrected samples in an iterative process. We propose a theory that formu-lates the conditions under which P-N learning guarantees improvement of the initial classifier and validate it on syn- thetic and real data. P-N learning is applied to the problem of on-line learning of object detector during tracking. We
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Metody pro vizuální rozpoznávání velkých souborů elastických objektů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2010: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4244-6984-0
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Omnipress
Místo vydání
Madison
Místo konání akce
San Francisco
Datum konání akce
13. 6. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000287417500007