Learning a Fine Vocabulary
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00175516" target="_blank" >RIV/68407700:21230/10:00175516 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning a Fine Vocabulary
Popis výsledku v původním jazyce
We present a novel similarity measure for bag-of-words type large scale image retrieval. The similarity function is learned in an unsupervised manner, requires no extra space over the standard bag-of-words method and is more discriminative than both L2-based soft assignment and Hamming embedding. Experimentally we show that the novel similarity function achieves mean average precision that is superior to any result published in the literature on the standard Oxford 105k dataset/protocol. At the same time, retrieval with the proposed similarity function is faster than the reference method.
Název v anglickém jazyce
Learning a Fine Vocabulary
Popis výsledku anglicky
We present a novel similarity measure for bag-of-words type large scale image retrieval. The similarity function is learned in an unsupervised manner, requires no extra space over the standard bag-of-words method and is more discriminative than both L2-based soft assignment and Hamming embedding. Experimentally we show that the novel similarity function achieves mean average precision that is superior to any result published in the literature on the standard Oxford 105k dataset/protocol. At the same time, retrieval with the proposed similarity function is faster than the reference method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Proceedings, Part III
ISBN
978-3-642-15557-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Heraklion
Datum konání akce
5. 9. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000286578500001