Approximate Best Bin First k-d Tree All Nearest Neighbor Search with Incremental Updates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00175535" target="_blank" >RIV/68407700:21230/10:00175535 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Best Bin First k-d Tree All Nearest Neighbor Search with Incremental Updates
Popis výsledku v původním jazyce
We describe an approximate algorithm to find all nearest neighbors (NN) for a set of points in moderate to high-dimensional spaces. Although the method is generally applicable, it is tailored to our main application, which is a NN-based entropy estimation for an image similarity criterion for image registration. Our algorithm is unique for having simultaneously the following features: (i) It is usable for millions of data points in several tens of dimensions. (ii) It can deal with multiple points. (iii)It offers a speedup of the all-NN search task with respect to repeating a NN search for each query point. (iv) It allows exact as well as approximate search when reduced search time is needed. (v) The search tree can be updated incrementally when the change of values of the data points is small. The method is based on creating a balanced k-d tree, which is then searched using the best-bin-first strategy. The tree nodes contain both tight and loose bounding boxes. The method is presented
Název v anglickém jazyce
Approximate Best Bin First k-d Tree All Nearest Neighbor Search with Incremental Updates
Popis výsledku anglicky
We describe an approximate algorithm to find all nearest neighbors (NN) for a set of points in moderate to high-dimensional spaces. Although the method is generally applicable, it is tailored to our main application, which is a NN-based entropy estimation for an image similarity criterion for image registration. Our algorithm is unique for having simultaneously the following features: (i) It is usable for millions of data points in several tens of dimensions. (ii) It can deal with multiple points. (iii)It offers a speedup of the all-NN search task with respect to repeating a NN search for each query point. (iv) It allows exact as well as approximate search when reduced search time is needed. (v) The search tree can be updated incrementally when the change of values of the data points is small. The method is based on creating a balanced k-d tree, which is then searched using the best-bin-first strategy. The tree nodes contain both tight and loose bounding boxes. The method is presented
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů