Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00175557" target="_blank" >RIV/68407700:21230/11:00175557 - isvavai.cz</a>
Výsledek na webu
<a href="http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.89" target="_blank" >http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.89</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2010.89" target="_blank" >10.1109/TPAMI.2010.89</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors
Popis výsledku v původním jazyce
In this paper, we present Linear Discriminant Projections (LDP) for reducing dimensionality and improving discriminability of local image descriptors. We place LDP into the context of state-of-the-art discriminant projections and analyze its properties.LDP requires a large set of training data with point-to-point correspondence ground truth. We demonstrate that training data produced by a simulation of image transformations leads to nearly the same results as the real data with correspondence ground truth. This makes it possible to apply LDP as well as other discriminant projection approaches to the problems where the correspondence ground truth is not available, such as image categorization. We perform an extensive experimental evaluation on standarddata sets in the context of image matching and categorization. We demonstrate that LDP enables significant dimensionality reduction of local descriptors and performance increases in different applications. The results improve upon the st
Název v anglickém jazyce
Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors
Popis výsledku anglicky
In this paper, we present Linear Discriminant Projections (LDP) for reducing dimensionality and improving discriminability of local image descriptors. We place LDP into the context of state-of-the-art discriminant projections and analyze its properties.LDP requires a large set of training data with point-to-point correspondence ground truth. We demonstrate that training data produced by a simulation of image transformations leads to nearly the same results as the real data with correspondence ground truth. This makes it possible to apply LDP as well as other discriminant projection approaches to the problems where the correspondence ground truth is not available, such as image categorization. We perform an extensive experimental evaluation on standarddata sets in the context of image matching and categorization. We demonstrate that LDP enables significant dimensionality reduction of local descriptors and performance increases in different applications. The results improve upon the st
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
338-352
Kód UT WoS článku
000285313200010
EID výsledku v databázi Scopus
—