Noise Analysis of MAIA System and Possible Noise Suppression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00180068" target="_blank" >RIV/68407700:21230/11:00180068 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985815:_____/11:00368909 RIV/60461373:22340/11:43892446
Výsledek na webu
<a href="http://www.radioeng.cz/fulltexts/2011/11_01_110_117.pdf" target="_blank" >http://www.radioeng.cz/fulltexts/2011/11_01_110_117.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noise Analysis of MAIA System and Possible Noise Suppression
Popis výsledku v původním jazyce
This paper is devoted to the noise analysis and noise suppression in a system for double station observation of the meteors now known as MAIA (Meteor Automatic Imager and Analyzer). The noise analysis is based on acquisition of testing video sequences indifferent light conditions and their further statistical evaluation. The main goal is to find a suitable noise model and subsequently determine if the noise is signal dependent or not. Noise and image model in the wavelet domain should be based on Gaussian mixture model (GMM) or Generalized Laplacian Model (GLM) and the model parameters should be estimated by moment method. Furthermore, noise should be modeled by GMM or GLM also in the space domain. GMM and GLM allow to model various types of probability density functions. Finally the advanced denoising algorithm using Bayesian estimator is applied and its performance is verified.
Název v anglickém jazyce
Noise Analysis of MAIA System and Possible Noise Suppression
Popis výsledku anglicky
This paper is devoted to the noise analysis and noise suppression in a system for double station observation of the meteors now known as MAIA (Meteor Automatic Imager and Analyzer). The noise analysis is based on acquisition of testing video sequences indifferent light conditions and their further statistical evaluation. The main goal is to find a suitable noise model and subsequently determine if the noise is signal dependent or not. Noise and image model in the wavelet domain should be based on Gaussian mixture model (GMM) or Generalized Laplacian Model (GLM) and the model parameters should be estimated by moment method. Furthermore, noise should be modeled by GMM or GLM also in the space domain. GMM and GLM allow to model various types of probability density functions. Finally the advanced denoising algorithm using Bayesian estimator is applied and its performance is verified.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
110-117
Kód UT WoS článku
000289657300016
EID výsledku v databázi Scopus
—