Accurate Procedures of the Sparse-Matrix Deflation for Circuit Pole-Zero Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00183907" target="_blank" >RIV/68407700:21230/11:00183907 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate Procedures of the Sparse-Matrix Deflation for Circuit Pole-Zero Analysis
Popis výsledku v původním jazyce
The pole-zero analysis is generally known to be very sensitive to the numerical precision of the computer arithmetic. In the paper, various methods are suggested for solving that problem. First, an optimal pivoting strategy of the algorithm that reducesthe general eigenvalue problem to the standard one is presented for both full- and sparse-matrix procedures. The algorithm increases the precision of the semisymbolic analysis. A new technique has also been incorporated recognizing multiple poles or zeros, which are often computed inaccurately by the standard algorithms. A novel type of this procedure called secondary root polishing is described in a detailed way. The accuracy is further increased using longer numerical data. First, the long double precision is utilized. Furthermore, a novel application of a suitable multiple-precision arithmetic library is suggested. Finally, using the longer numerical data to eliminate possible imprecision of the multiple eigenvalues is evaluated.
Název v anglickém jazyce
Accurate Procedures of the Sparse-Matrix Deflation for Circuit Pole-Zero Analysis
Popis výsledku anglicky
The pole-zero analysis is generally known to be very sensitive to the numerical precision of the computer arithmetic. In the paper, various methods are suggested for solving that problem. First, an optimal pivoting strategy of the algorithm that reducesthe general eigenvalue problem to the standard one is presented for both full- and sparse-matrix procedures. The algorithm increases the precision of the semisymbolic analysis. A new technique has also been incorporated recognizing multiple poles or zeros, which are often computed inaccurately by the standard algorithms. A novel type of this procedure called secondary root polishing is described in a detailed way. The accuracy is further increased using longer numerical data. First, the long double precision is utilized. Furthermore, a novel application of a suitable multiple-precision arithmetic library is suggested. Finally, using the longer numerical data to eliminate possible imprecision of the multiple eigenvalues is evaluated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F10%2F1665" target="_blank" >GAP102/10/1665: Symbolické a semisymbolické metody pro výkonové a mechatronické aplikace</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Africon 2011
ISBN
978-1-61284-993-5
ISSN
2153-0025
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Livingstone
Datum konání akce
13. 9. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—