Learning Semantic Web Usage Profiles by Using Genetic Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00184153" target="_blank" >RIV/68407700:21230/11:00184153 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/11:00184153
Výsledek na webu
<a href="http://ijits-bg.com/" target="_blank" >http://ijits-bg.com/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Semantic Web Usage Profiles by Using Genetic Algorithms
Popis výsledku v původním jazyce
Web usage profile is very important in recommender systems. More interesting is the semantic enriched profile, which can describe visitor intents by ontologies and express more information and relations of visitor's character. Our research is based on processing semantically enriched clickstream and application of scoring algorithm, which is based on symbolic regression. A semantic enrichment uses Linked Data principles. The scoring assigns to each pageview a value, which represents and involves visitorinterests. Scoring involves all know attributes of each pageview including semantic annotation. The score of each pageview is used to establish a visitor profile. The established profile can be in form of ontologies. In this paper, we propose integratescoring algorithm into semantic web usage mining and publish visitor profile in RDF/OWL representation. We suggest merge the profiles from different web sites and integrate additional related information from publicly available reso
Název v anglickém jazyce
Learning Semantic Web Usage Profiles by Using Genetic Algorithms
Popis výsledku anglicky
Web usage profile is very important in recommender systems. More interesting is the semantic enriched profile, which can describe visitor intents by ontologies and express more information and relations of visitor's character. Our research is based on processing semantically enriched clickstream and application of scoring algorithm, which is based on symbolic regression. A semantic enrichment uses Linked Data principles. The scoring assigns to each pageview a value, which represents and involves visitorinterests. Scoring involves all know attributes of each pageview including semantic annotation. The score of each pageview is used to establish a visitor profile. The established profile can be in form of ontologies. In this paper, we propose integratescoring algorithm into semantic web usage mining and publish visitor profile in RDF/OWL representation. We suggest merge the profiles from different web sites and integrate additional related information from publicly available reso
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal on Information Technologies and Security
ISSN
1313-8251
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
18
Strana od-do
3-20
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—