3D Buildings Extraction from Aerial Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187122" target="_blank" >RIV/68407700:21230/11:00187122 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Buildings Extraction from Aerial Images
Popis výsledku v původním jazyce
This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset ofquadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images.This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geomet
Název v anglickém jazyce
3D Buildings Extraction from Aerial Images
Popis výsledku anglicky
This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset ofquadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images.This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geomet
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E10045" target="_blank" >7E10045: Massive Sets of Heuristics for Machine Learning</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů