Parkinsonian Tremor Identification with Multiple Local Field Potential Feature Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00194267" target="_blank" >RIV/68407700:21230/12:00194267 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jneumeth.2012.06.027" target="_blank" >http://dx.doi.org/10.1016/j.jneumeth.2012.06.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jneumeth.2012.06.027" target="_blank" >10.1016/j.jneumeth.2012.06.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parkinsonian Tremor Identification with Multiple Local Field Potential Feature Classification
Popis výsledku v původním jazyce
This paper explores the development of multi-feature classification techniques used to identify tremor-related characteristics in the Parkinsonian patient. Local field potentials were recorded from the subthalamic nucleus and the globus pallidus internusof eight Parkinsonian patients through the implanted electrodes of a Deep brain stimulation (DBS) device prior to device internalization.A range of signal processing techniques were evaluated with respect to their tremor detection capability and used asinputs in a multi-feature neural network classifier to identify the activity of Parkinsonian tremor. The results of this study show that a trained multi-feature neural network is able, under certain conditions, to achieve excellent detection accuracy onpatients unseen during training. Overall the tremor detection accuracy was mixed, although an accuracy of over 86% was achieved in four out of the eight patients.
Název v anglickém jazyce
Parkinsonian Tremor Identification with Multiple Local Field Potential Feature Classification
Popis výsledku anglicky
This paper explores the development of multi-feature classification techniques used to identify tremor-related characteristics in the Parkinsonian patient. Local field potentials were recorded from the subthalamic nucleus and the globus pallidus internusof eight Parkinsonian patients through the implanted electrodes of a Deep brain stimulation (DBS) device prior to device internalization.A range of signal processing techniques were evaluated with respect to their tremor detection capability and used asinputs in a multi-feature neural network classifier to identify the activity of Parkinsonian tremor. The results of this study show that a trained multi-feature neural network is able, under certain conditions, to achieve excellent detection accuracy onpatients unseen during training. Overall the tremor detection accuracy was mixed, although an accuracy of over 86% was achieved in four out of the eight patients.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA309%2F09%2F1145" target="_blank" >GA309/09/1145: Mechanismy hluboké mozkové stimulace: Úloha subthalamu v motorických, vizuálních a afektivních procesech</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neuroscience Methods
ISSN
0165-0270
e-ISSN
—
Svazek periodika
2
Číslo periodika v rámci svazku
209
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
320-330
Kód UT WoS článku
000308897900007
EID výsledku v databázi Scopus
—