Restarted Local Search Algorithms for Continuous Black Box Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00199146" target="_blank" >RIV/68407700:21230/12:00199146 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00087" target="_blank" >http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00087</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restarted Local Search Algorithms for Continuous Black Box Optimization
Popis výsledku v původním jazyce
Several local search algorithms for real valued domains (axis parallel line search, Nelder Mead simplex search, Rosenbrock's algorithm, quasi Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard to beat baseline algorithm), (2) to describe individualfeatures of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions
Název v anglickém jazyce
Restarted Local Search Algorithms for Continuous Black Box Optimization
Popis výsledku anglicky
Several local search algorithms for real valued domains (axis parallel line search, Nelder Mead simplex search, Rosenbrock's algorithm, quasi Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard to beat baseline algorithm), (2) to describe individualfeatures of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP102%2F08%2FP094" target="_blank" >GP102/08/P094: Metody strojového učení pro konstrukci řešení v evolučních algoritmech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Evolutionary Computation
ISSN
1063-6560
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
575-607
Kód UT WoS článku
000311334400005
EID výsledku v databázi Scopus
—